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Chapter 1: Introduction

1.1 Motivation

The United States (U.S.), in addition to countries around the world, is actively support-

ing avenues for expanding its energy portfolio to include sources that are renewable and

locally accessible. The White House and U.S. Department of Energy (DOE) have set

guidelines for reducing dependence on foreign oil and better implementing water power

methods. More specifically, the U.S. is seeking to generate 80% of its energy using re-

newable sources by 2035 and to achieve an 80% reduction in carbon emissions by 2050

[1]. Currently the primary renewable energy sources used to supply electricity to the grid

are hydropower, solar, and wind. However, energy provided by these sources is minimal

in comparison the actual amount of energy used and as such other avenues for finding

energy need exploring [2]. Relatively recently, research has turned to the ocean — with

the vast amount of power contained in its waves, tides, and currents — in an attempt

to satisfy energy needs while minimizing dependency on fossil fuels.

The estimated global amount of energy in ocean waves is between 16,000 TWh per year

and 18,500 TWh per year [3]. Quantified, one terawatt–hour of generated electricity is

roughly the amount of energy that 9,000 U.S. homes use over the course of a year [4].

The DOE has reported that in the U.S. the ocean waves, ocean tides and river currents

have, theoretically, enough extractable power to supply one–third of the nation’s energy

requirements [5]. Furthermore, the recoverable ocean wave resource is estimated to be
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approximately 1,170 TWh per year [5] which could provide the electricity needed by over

one million homes. In Hawaii, Alaska, and Oregon — states with prime wave resources

— wave energy could potentially supply 100%, 100%, and 57% of these states’ respective

energy needs [1].

Additionally, in the United States, 50 percent of the population resides within 50 miles

of a coastline [6]. Such proximity to the energy source would limit energy waste due to

electricity transfer and potentially limit extended blackout scenarios caused by disparate

power sources and an aging grid. For some specific cases where electricity is derived

from fossil fuel often transported from far away, those living in remote coastal areas or

on islands not connected to the grid, the use of wave energy as a source of electricity

would greatly improve energy security.

Due to the number of individuals residing near an ocean, the push to develop and im-

plement renewable energy sources, and the quantity of energy to be extracted from the

ocean, wave energy is a promising source of electricity for which there are many wave

energy converters (WECs) under development that are nearing the point of full–scale

ocean deployment. Following ocean deployment of individual converters, developers are

planning the implementation of arrays of WECs to provide grid–connected power to a

large consumer base with many electrical needs. The process of developing WEC arrays

involves comprehending and overcoming associated challenges such as volatile sea states

and associated costs. As it is vital that the wave energy industry be well–informed re-

garding the potential deployment of arrays to ensure the industry’s survival and future

competitiveness, determining optimal array configurations at this stage in research is

essential.
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In light of the progression of the wind and solar industries, the wave energy industry will

likely follow a similar trajectory and ultimately deploy WECs in array scenarios utiliz-

ing advanced WEC control techniques. By using optimization techniques to account for

the many influencing factors that determine optimal layout configurations, developers

will better understand layout designs that maximize the power produced and minimize

cost before taking the risk of deploying WECs in the ocean. While at the current time,

industry is primarily focusing their e↵orts on converter design and optimization, it is

important that research be conducted to prepare for the potential of wave energy grid

integration. Additionally, WEC behavior in array settings may influence a converter’s

design.

Array design can be an e�cient solution to power maximization and cost reduction, as

higher energy may be produced byWECs integrated into arrays than by the same number

of isolated WECs. Based on studies of the wave fields created by converters in grouped

scenarios, the possibility of attaining increased power due to positive WEC-WEC wave

interaction has been theorized [7, 8, 9, 10]. Indeed, the radiated and scattered waves

resulting from the interaction between incident waves and WECs has shown to amplify

the interaction factor, q, expressed in Eq. 1.1 [9]

q = Parray/(N ⇤ Piso). (1.1)

In Eq. 1.1, Parray, Piso, and N represent the power extracted from the array, the power

extracted from an isolated WEC and the number of WECs [11]. Hence, the proximity of

WECs to one another will a↵ect the power production, as well as contribute to reducing
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array costs, which are functions of aspects such as the mooring and power cable length,

space limitations and maintenance [12]. Therefore, it is critical to examine optimal array

layouts and to evaluate the e↵ect that the calculating algorithm has on finding such an

optimal configuration.

Regarding WEC array design, most research has focused on empirical layouts – assumed

layouts given a designers best understanding of how converters behave and interact in

a wave field. However, the complexity of the ocean space excludes these solutions from

being readily used by industry as they do not wholly account for many influences that

will a↵ect a configuration. As such, research has shifted towards leveraging automated

optimization methods to generate potential layout designs by better exploring and ex-

ploiting the search space. This dissertation will present the problem–specific genetic

algorithm (GA) we have developed and tested.

1.2 Previous Work

WECs in the ocean a↵ect the wave field through radiated waves (waves that ripple out

from a WEC) and di↵racted waves (the bending of the incident wave around a con-

verter). Figure 1.1 shows a single WEC’s e↵ect on a wave field, where yellow indicates

an increase in wave height as compared to the incident wave height, and dark blue indi-

cates a decrease in compared wave height. Essentially, Fig. 1.1 shows the e↵ect of wave

di↵raction when an incident wave experiences a WEC in the ocean — the waves pile up

and bend around the obstructing converter.
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Figure 1.1: E↵ect of a single WEC on a wave field demonstrated by change in wave
height
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Unlike wind energy farms — where placing turbines too close to one another results in

negative interactions between turbines and a decrease in power production — WECs

have the potential to generate more power when placed in an array than the combined

power that the same number of WECs would produce acting in isolation [9]. This con-

cept is described using the interaction factor, q, shown in Eq. 1.1. Having focused on

finding arrays where this interaction factor is greater than one, previous research has

noted that there are many elements which influence the power produced by an array,

including sea state, wave directionality, and array configuration [12]. An understanding

of these elements is necessary for the design of WEC layouts [13]. However, the impact

that these factors have on an array’s power production is yet to be well quantified.

Research in array configuration design has primarily focused on pre–determined layouts

and their resulting q factors. Examples of layout shapes that have been considered in-

clude lines (both parallel and orthogonal to the oncoming wave), triangles, squares, and

various grid designs [14, 15, 16, 17, 18, 19, 20].

Additional research has observed that beyond layout configuration, individual WEC and

global control schemes would greatly improve power production [21, 22, 23]. Ricci et al.

suggested that the benefit a converter can experience from a neighboring WEC degrades

as distance between converters increases. From a configuration study where heaving

point absorbers are theoretically placed o↵ the coast of Portugal, the distance proposed

at which interaction e↵ects become negligible is four times the WEC radius [24]. The

required minimum spacing between WECs in an array is currently not known definitively

as converter designs have yet to converge. For example, depending on if converters are

fixed or floating; on where WECs exist in the water column; or on WEC specific watch
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circles, the required minimum spacing distance will di↵er. Consequently, minimum sep-

aration distances in research and industry depend on problem specific parameters.

The main approach in WEC array optimization research has been to focus on maximiz-

ing the power production. It has been shown that controlling the spacing of converters

in an array can increase the interaction factor q (through wave radiating and scatter-

ing e↵ects), resulting in an augmentation of power generation [25]. In addition, general

approaches address the control strategies of the array and individual WECs, as well as

power take o↵ (PTO) characteristics for maximizing the overall array power extraction

in waves with linear, regular and fixed incident direction parameters for specific deploy-

ment locations. Consideration of more realistic conditions has been applied to model

predictive and PTO control optimization uniquely [26], but, prior to our research, the

e↵ect of array layout optimization on power output maximization in realistic scenarios

has not been fully studied.

Several researchers have utilized optimization methods for determining layouts that max-

imize the interaction factor. Using a point approximation to determine WEC array power

production, Fitzgerald and Thomas implement a sequential quadratic algorithm based

on a selected starting point [27]. Considering two variations of a GA and a greedy al-

gorithm, Mao determines that the GA performs better since the optimal configurations

di↵er depending on the number of WECs being utilized [28]. Snyder & Moarefdoost used

a two-phase heuristic algorithm that assumes a unidirectional wave in combination with

a convex optimization solver and is dependent on an assumption of symmetry [29, 30].

They present two optimization methods, a max–min model and a maximization expected

value model, to account for variability in incident wave direction [31]. They determine
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that an increase in uncertainty yields a decrease in optimal spacing between two con-

verters. Moarefdoost et al. later presents a heuristic algorithm that exploits solutions

believed to be near optimal [30]. More recently, McGuinness Thomas developed an

analytical method for determining optimal spacing between converters when placed in

a single row parallel to the oncoming wave; in this work, arrays are optimized based on

a maximization of the mean of the interaction factor rather than just maximizing the

interaction factor itself [32].

Using a unidirectional, regular sea state and a set number of point absorber type con-

verters constrained in the vertical or heave direction, Child & Venugopal implement two

methodologies to generate layout configurations: Parabolic Intersection and MATLAB’s

GA toolbox [33, 34, 35]. Parabolic Intersection assumes that the di↵racted waves around

a WEC take the shape of a parabola and so, once the first WEC is placed, following

WECs are then placed to benefit from the higher wave heights in the parabolic shaped

di↵racted waves generated by the first WEC. For both the PI method and the MATLAB

GA method, the achieved layouts have the shape of a ”W” with the two bottom points

of the ”W” pointing towards the oncoming wave. The GA method returned the highest

interaction factor of the two methodologies. Figure 1.2(a) and 1.2(b) show examples

of generated arrays for these two methods. These figures were created based on results

shown in [34].

The private company DNV–GL has also worked on the creation of an optimization tool,

WaveFarmer [36]. In available DNV–GL research, an array consisting of four converters

is placed in a square formation such that the WEC positions are constrained and the in-

dividual WEC’s power take–o↵ systems are controlled [23]. A ten–converter array is also
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(a) Child and Venugopal – Parabolic Intersection (b) Child and Venugopal – MATLAB’s Genetic
Algorithm Toolbox

(c) DNV-GL – MATLAB’s Genetic Algorithm
Toolbox

Figure 1.2: Example arrays achieved by previous research
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considered, using a Brettschneider spectrum wave field input, and optimal WEC layout

is determined using MATLAB’S GA toolbox. The ten–converter array is arranged in

two o↵set parallel lines that are generally perpendicular to the oncoming incident waves

with five WECs in each row as shown in Fig. 1.2(c). For each of the evaluated cases an

interaction factor greater than one was reported [23]. The layout shown in Fig. 1.2(c)

was created based on a result shown in [23].

The potential for determining a layout that would provide an interaction factor greater

than one is promising; however, developers are ultimately interested in reducing the cost

of energy, which helps drive down barriers of new, renewable energy source implementa-

tion. Consequently, economics must be considered during the computational WEC array

design process. Vicente et al. and Balitsky et al. both note that array costs will a↵ect

the configuration of WEC arrays [17, 21]. However, we have found no reported work,

excluding our own previous work [25], that incorporates cost as an objective or into the

objective function.

More recently, a WEC–specific machine learning approach has been applied to the WEC

array optimization problem by Sarkar et al. [37]. Evaluating a bottom mounted flap type

WEC, it is determined that, for submerged, surge–type converters, clustering should be

avoided. Wu et al. also examines a submerged type WEC and implements two evolu-

tionary type algorithms, a (1+1)–EA algorithm and a Covariance Matrix Adaptation

based Evolutionary Strategy (CMA–ES) [38]. Optimizing an array of mid–water col-

umn, floating spheres, the methods do not perform well independently. However, when

the (1+1)–EA is used to get close to converging on a solution, the CMA–ES is able to

fine–tune that solution.
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McGuinness and Thomas have created an analytical method of optimizing the spacing

between WECs that are placed in a row [32]. Observing that in certain scenarios WECs

tend to cluster, they postulate that these WECs could be replaced with a larger WECs

to minimize physical WEC interaction while still achieving increased power production.

The optimal spacings also di↵er due to incident wave direction.

As the wave energy industry advances towards full scale deployment, research has con-

tinued to explore how to achieve maximum array power generation and interaction factor

(defined in Eq. (1.1)) [39]. While is not well known what most influences power de-

velopment, both array optimization and active WEC control have theoretically shown

substantial increases [40, 41, 42, 26]. This thesis will provide an overview of how our

work has contributed to this field.
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Part I

Algorithm Development
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Chapter 2: Binary Genetic Algorithm Overview

Our work in the realm of WEC array optimization began with the development of a

binary genetic algorithm specific to the design of array design [11]. We used a GA ap-

proach because of its ability to e�ciently converge on optimal solutions while considering

continuous and discrete factors. Recognizing the need to eventually consider more than

just power as a design influence, we conducted initial research with an objective function

that included a rough cost estimate [43]. As a part of our previous work, we investigated

existing models of WEC array economics and found at the current stage of the industry

that there is not enough known or available information for WEC arrays. Consequently,

we created an initial cost model using what information was available from Sandia Na-

tional Laboratory’s Reference Model 6 [44]. Continuing this research, this chapter will

introduce the concept of our specific GA in detail and will discuss the workings of a

discretized version.

To achieve optimal layouts, we first model a single WEC using the boundary element

software, WAMIT [45]. This informs how a WEC behaves in a given wave field for a

range of wave directions – specifically, we obtain the WEC’s added mass, hydrodynamic

damping, hydrodynamic restoring force, and excitation force. The developed GA will

then create generations of potential layouts based on the process of survival of the fittest

in combination with how chromosomes are shared between generations as children are

produced by combinations of parents’ chromosomes.
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Within our optimization process there are several sets of code that must be linked to-

gether.

• WAMIT : A boundary element software used to determine how waves interact with

o↵shore WECs. For our project, the outputs required of WAMIT are the added

mass, hydrodynamic damping, hydrodynamic restoring force, and excitation force

of a single WEC (for a single water depth and a range of wave periods/directions).

• mwave : A MATLAB computational package for evaluating WEC(s) and ocean

waves. We are using mwave both as a pre– and post–processor for WAMIT and

for determining an array’s power output such that converter–to–converter wave

interactions are included.

• optimization algorithm : The problem specific algorithm we are developing for

the purpose of determining optimal WEC layout designs. This algorithm is being

written in MATLAB specifically to interface with the other programs.

As an evolutionary optimization algorithm, a GA mimics the passing of traits from

parents to children, with mutations diminishing local optima convergence. Utilizing

stochastic attributes — such as generating a random parent population – improves the

GA’s performance. In our GA, several tunable parameters exist — elitism, crossover,

and mutation. An individual parent represents a unique array solution.

As part of initializing the genetic algorithm, the first step is to generate an initial pop-

ulation of parents, p. p is the number of initial parents, which is also the number of

solutions in each generation. A discrete number, N, of WECs are placed in an x * y

grid with discrete cells that represent all the possible locations for WECs o↵shore (x
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cells along x–axis) and alongshore (y cells along y–axis), and whose x–axis and y–axis

represent the distance of array footprint o↵shore and alongshore respectively. Conse-

quently, the maximum distance o↵shore and alongshore must be defined, as well as the

minimum allowable distance between WECs. This initial array of dimension p * (x *

y) is converted to a row vector (depicted in Fig. 2.1) with dimension 1*x * y. x and y

are the number of grid cells along the x–axis and y–axis respectively. At each of these

randomly generated locations, the cell is assigned a value of ”1,” while every other cell

is assigned a value of ”0.” Hence, the initial parent grid of p * (x * y) cells with each

row containing N WECs is created, and is defined as the first generation.

With the initial parents generated, evaluated, and sorted, children are created using

elitism, crossover, mutation, and random layout generation. Each of these facets is a

tunable parameter that can be adjusted in order to help the GA converge upon a solution.

For the GA, elitism involves cloning the best solutions from the parent set into the chil-

dren set. This means that a set amount of the children set will be identical to the best

of the parents. Additionally, the same percentage of parents that are cloned are killed

o↵ and that percentage of the children set is populated with random solutions to ensure

that the GA can fully explore the solution space and avoid getting stuck in local minima.

After elitism is complete, crossover is performed on a set upper percentage of the par-

ent population. The parents that were cloned are included in this crossover population

to allow the current best solutions more influence on the propagated solutions. The

crossover is performed by randomly swapping a set fraction of WECs between parents

being mated. For example, if the fourth WEC from parent one is chosen to be moved,
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Figure 2.1: Binary GA relationship between physical space and algorithm strings
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then it would be removed from parent one and a converter would be placed in parent

two at the location from which it was moved in parent one. This new layout, comprised

primarily of parent one, but with the variation introduced from parent two, constitutes

one of the two children to be created. The second child solution is made by using the

same process — by randomly choosing a WEC from parent two and moving it to parent

one. To ensure that the defined number of converters is maintained, WECs from both

parents are also removed. In short, moving a random WEC or WECs in each parent to

a new location or locations that is acquired randomly from the other parent makes the

children solutions. Figure 2.2 demonstrates this process.

Figure 2.2: Binary GA crossover method

After the crossover procedure is complete then this portion of the children population

is mutated. Mutation allows the method to explore the local solution space around a
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proposed layout with less randomness than through the introduction of new completely

random solutions in elitism. Within our GA it is important to both explore the solution

space well and exploit found solutions. The introduction of mutation allows for the ex-

ploitation of found solutions to potentially improve upon these solutions. The method

involves randomly moving a WEC in a layout based on a set percentage. Like mutation

is relatively rare in the physical world, mutation within our GA is a small percentage

and an example mutation rate will be shown later.

With elitism, crossover, and mutation complete, the objective function of each new

layout is computed. Then this newly generated children set is sorted and checked for

convergence. If attained, the algorithm reports the converged solution, but if not, then

the children set becomes the next parent set and the process is repeated. Convergence

is defined as a prescribed upper percentage of the children set reporting the same lay-

outs. Once convergence is attained the algorithm returns the converged solution as the

reported optimal array layout. (If convergence is not attained the children population

becomes the next parent population and the process continues.) Figure 2.3 shows the

pseudocode for the binary version of our developed GA.

Through implementing this binary GA, our previous work in WEC array optimization

introduced cost into the objective function in addition to generated power [25, 11]. To

find the power generated by an array, the isolated WEC’s hydrodynamic behavior, in-

dividual converter orientation, wave di↵raction, and wave radiation are required. This

information is used to calculate each WEC’s excitation force as well as the total array’s

added mass and damping. The power for an individual WEC is then found using Eq. 2.1
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Figure 2.3: Binary GA flowchart
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P =
1

8
X⇤B�1X (2.1)

where B�1 represents the damping and X represents the complex excitation force [46].

This process is described in detail in [20].

With the total power development for the array found, the next component of the ob-

jective function to determine is the cost associated with an array of WECs. As noted in

[43], the particulars to be included in array economic calculations lack specificity due to

limited deployment data. As such, models that exist for determining array costs need

further development to provide realistic results. We chose to use Sandia National Labo-

ratory’s Reference Model Project 6 (RMP) as it is the most comprehensive model found,

and because it provides information for arrays with di↵ering numbers of WECs [44].

In general, array economics are separated into capital costs (CAPEX) and operations

and maintenance costs (OM) as shown in Fig. 2.4. The information provided by the

RMP was used to generate an equation for estimating array cost based on the number

of converters in the array, N, with an assumed lifetime of 20 years,

Cost = 3(10)7 ⇤N0.6735. (2.2)

Equation 2.2 serves as a preliminary means of estimating WEC array costs and was de-

rived by adding the capital and OM costs together from the information provided by the

RMP and then fitting a curve to that data over the di↵erent sized arrays. It is understood

that these costs depend on additional factors such as array location, distance to shore,

location in the water column, mooring configuration, and electrical cabling. Though
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(a) Capital costs

(b) Operations and maintenance costs

Figure 2.4: Costs associated with arrays for di↵ering numbers of WECs



22

basic, an equation such as Eq. 2.2 is consistent with other energy system optimization

scenarios in their early stages of development [47].To calculate power, the behavior of

an isolated WEC is first considered using WAMIT [45]. The converter is subjected to

incident waves from multiple directions in a sea–state with a limited water depth and a

range of wave periods. With the hydrodynamic information of the single WEC obtained

from WAMIT, the di↵raction coe�cient matrix, force transfer matrix, and radiated wave

coe�cients are found for the single WEC. The objective function used in our binary GA

work includes cost in addition to power and is shown in Eq. 2.3

ObjFun = Cost/P20 (2.3)

where P20 represents an array’s generated power over an assumed 20–year lifetime and

Cost represents the cost of the array over 20 years.

2.1 Binary GA Results

This initial work examined the e↵ects of converter spacing on the optimal layout of

one–meter radius truncated cylindrical point absorbers constrained in heave (similar to

those used in [34] and shown in Fig. 2.5), and found that a defined minimum separation

distance dictated whether radiated waves or di↵racted waves improved the interaction

factor. Figure 2.5 shows the portion of the truncated cylinder below the water surface.

Figure 2.6(a) shows the result for a fixed three—meter minimum separation distance,

which essentially means that the WECs are allowed to get within one meter edge–to–

edge. With this proximity, the converters take advantage of neighboring converters’

radiated waves.



23

Figure 2.5: Portion of modeled converter below the water surface

(a) Minimum separation distance of 3–meters (b) Minimum separation distance of 6–meters

Figure 2.6: Optimal layouts generated by a binary GA

When a further minimum separation distance of six–meters (four meters edge–to–edge)

is required, the interaction factor is found to improve through taking advantage of

di↵racted waves. The best–found layout given this minimum separation distance is
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shown in Fig. 2.6(b). The GA input parameters are shown in Table 2.1. The GA must

be tuned in order avoid converging too quickly or never converging. This work demon-

strates the potential ability of WECs to benefit from being deliberately placed in relative

close proximity.

Table 2.1: Tunable GA parameters used in initial binary work

# of parents 100 100
Elitism rate 10% 8%

Crossover rate 80% 84%
Mutation rate 0.02% 0.2%

Convergence requirement 50% 50%

The layouts shown in Fig. 2.6 di↵er based on the type of altered waves the WECs are

able to experience. For the three–meter minimum separation distance the converters

can get close enough to each other to benefit from the radiated waves of neighboring

WECs. However, these radiated waves dissipate quickly as a they move away from the

converter and consequently, when a six–meter minimum separation distance is enforced,

the WECs instead take advantage of the di↵racted waves from neighboring converters.

These configurations also have lone converters that are not a part of the patterns created

by the remaining four converters. Likely, if the number of WECs and the physical space

was increased these lone WECs become a part of these patterns. Or new patterns would

emerge that include these new WECs.
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Chapter 3: Algorithm Comparison Study

3.1 Introduction

Regarding the various parameters involved with optimizing arrays, di↵erent methods and

even di↵erent runs in the same method, may converge to varying solutions given the same

inputs. In this chapter, we will investigate the optimization of a WEC array’s power

production utilizing three types of optimization methods. The optimization methods to

be implemented and compared are an evolutionary algorithm, a genetic algorithm, and

a simulated annealing algorithm. Comparing the final generated solutions from these

three algorithms will aid in determining which approach is better for optimizing WEC

arrays containing di↵erent number of WECs and will provide the wave energy research

community with information to aid in reducing overall array cost.

This chapter will first introduce previous WEC array design research and this will be

followed by a discussion of the three selected algorithms: genetic, evolutionary and sim-

ulated annealing. The evolutionary algorithm (EA) and simulated annealing algorithm

(SA) were chosen for comparison against our previously utilized GA to better understand

the importance of exploring the solution space and exploiting potential solutions respec-

tively. General approaches to the problem and related work will be presented, array

modeling addressed, the three algorithms’ performance compared, and resulting array

layouts noted. The performance will be examined through consideration of obtained

interaction factors, objective function evaluations, and number of function evaluations.
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3.1.1 Evolutionary Algorithm

EAs are a class of search algorithms that are often used as function optimizers for static

objective functions [48]. EAs are principally a stochastic search and optimization method

based on the principles of natural biological evolution. Compared to traditional opti-

mization methods such as calculus–based and enumerative strategies, EAs are robust

and may be applied generally without recourse to domain–specific heuristics [49]. Ge-

netic qualities influence the chance of a potential solution’s survival in that the struggle

to survive throughout generations leads to a natural selection or survival of the fittest,

and genetic variants that have proven to be well adapted to the environmental conditions

appear preferably in subsequent generations [50].

Two main concepts of evolutionary based optimization strategies are discussed in the lit-

erature: GAs [51] and EAs [52]. There are many similarities between these two methods,

but they have some key di↵erences as well. The most important di↵erence comes from

the crossover process that occurs in a GA. Both the EA and the GA include mutation d

the mutation plays an important role in the implementation of an EA. The mutation op-

erator randomly alters part of solutions within a generation to produce a new generation

that is mostly like the original generation, but with a small amount of variation [53]. EAs

operate on a population of potential solutions, applying the principle of survival of the

fittest to produce successively better approximations to a solution [48]. Each generation

seeks to improve the solutions in the way that eliminates the weak solutions according to

their level of fitness and keeps the stronger answers for mutation in the next generation.
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3.1.2 Genetic Algorithm

Related to the EA, the genetic algorithm (GA) is a method based on the evolutionary

process in which traits are acquired through the implementation of mutation. However,

unlike EAs, GAs also mimic the way that chromosomes are passed down from parent

generations to child generations. This process was described in detail in Chapter 2.

3.1.3 Simulated Annealing

Simulated Annealing (SA) is a powerful optimization technique, proposed in 1983 by

Kirkpatrick et al. [54], because of its ability to converge upon very good solutions for

di�cult combinatorial optimization problems, while easily dealing with complex non-

linear constraints [55]. Simulated annealing takes advantage of the analogy between

the minimization of an optimization problem’s cost function and the slow procedure of

gradually cooling a metal until it reaches its ”freezing” point [54, 56, 57]. Based on the

iterative method proposed by Metropolis et al., this system simulates the performance

of atoms in equilibrium at di↵erent temperatures while cooling [58].

Less optimal solutions are more likely to be accepted in the early irritations of the algo-

rithm, because of the high temperature; however, by cooling down the temperature, the

successors move towards selection of only better solutions. One of the critical parame-

ters used in simulated annealing algorithm is the temperature and the rate at which it

decreases.
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3.2 Methods

Each of the presented approaches has potential for determining optimally arranged WEC

arrays given the many influencing factors involved in array design and the large solution

space. This section will discuss the specific implementation of these algorithms for use

with a binary WEC array optimization scenario. For all the methods, WECs with

predefined bodies and known hydrokinetic properties are used as inputs. Additionaly, the

solution space is discretized. The same objective function is used for all the algorithms

and is the same as what was presented in Chapter 2. Assuming a 20–year lifetime,

the cost value in this objective function is derived from information provided in Sandia

National Laboratory’s Reference Model Project (RMP) and is shown in Eq. 2.2 [44].

3.2.1 Evolutionary Algorithm

The first proposed method to create and optimize the layout of a WEC array is an

EA. As part of initializing the EA, the first step is to generate an initial population

of parents, p. A row vector, as demonstrated in Fig. 2.2, represents each parent. An

initial array of dimension p * (x * y) is generated in which N WECs are inserted in each

parent’s vector based on randomly generated values ranging from 1 to x * y. At each of

these randomly generated locations, the cell is assigned a value of ”1,” while every other

cell is assigned a value of ”0.” Hence, the initial parents grid of p * (x * y) cells with

each row containing N WECs is created, and is defined as the first generation. This is

demonstrated in Fig. 2.1.
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Once generated, this parent generation is evaluated based on the objective function

presented in Eq. 2.3. Mutation is then applied to the parent array – a defined number

of random cells are selected for mutation in each row (parent) of the sorted population.

If a ”1” cell is subject to mutation, it is swapped with a randomly selected ”0” cell in

the same vector to maintain the number of WECs. Similarly, if a ”0” cell is subject to

mutation in a vector, it is then swapped with a randomly selected ”1” cell in the same

vector in order to maintain the number of WECs. Once all the parent solutions have

been mutated, the newly obtained children array is evaluated with the objective function.

After evaluation, the children population is combined with the parent population and

this combined pool is then sorted according to the objective function evaluations of

each potential solution. The new parent generation is obtained by selecting the p best

individuals from the combined solution array - this keeps the size of the population

consistent between generations. Since the objective function in this project is defined by

the ratio of cost to power, the goal is to minimize the objective function, thus minimizing

the cost while maximizing the power. Therefore, as long as the objective function of

the newly obtained generation is superior to the objective function of the best parents’

generation on record, the process continues to search through mutated generations to find

an optimum objective function and layout until a set number of generations has elapsed

without improvement. On the other hand, whenever a generation obtains a solution with

a lower objective function it is recorded as the overall best layout. The process continues

as long as better solutions are being found or until a number of generations has elapsed

without finding a better solution.
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3.2.2 Genetic Algorithm

The binary GA methodology is described in depth in Chapter 2.

3.2.3 Simulated Annealing

The final method applied to the WEC array optimization problem is a SA approach.

To implement the SA method, the initialization of the space for WEC placement is very

similar to that described in the EA and GA sections prior, except that for the SA, the

grid is not converted to row vector format. In the SA method, bad solutions may be

accepted at the beginning of the process. The probability of accepting a worse solution

in the algorithm is based on the di↵erence between power generated in the previous and

current solutions, and the iteration number. The objective function is found in the same

manner as the EA and the GA using Eq. 2.3.

Implementation of this procedure depends on the temperature and its reduction or cool-

ing rate parameters, which must be tuned based on the nature of the specific problem.

The probability of accepting a worse solution is calculated at each epoch using on these

numbers.

To implement the SA method, a single randomly generated layout is created by inserting

a set number of WECs into discretized locations in a grid. At each iteration a converter

is randomly chosen for repositioning to one of the eight potential surrounding cells –

assuming that the potential cell is in the allowable space and that no converter already

exists there. The new location of the chosen WEC is randomly selected from the potential
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eight locations. The objective function for the proposed new layout is calculated and

compared against the objective function of the current layout. If the proposed position

is better than the current position, the proposed position is accepted. However, if the

proposed position is not better than the current position, it may still be accepted based

on a determined probability,

Paccept = e(�(|4E|/T )), (3.1)

where Paccept is the probability of acceptance, 4E is the di↵erence between the objective

function evaluation of the proposed solution and the overall best solution, and T is the

temperature value. The basic algorithm for simulated annealing is the following:

1. Generate a random solution;

2. Set initial temperature T = T1 ;

3. Calculate its cost using a defined objective function;

4. Generate a random neighboring solution;

5. Calculate the new solution’s objective function;

6. Compare the new solution with the previous solution:

• If cnew < cold: move to the new solution;

• If cnew > cold: maybe move to the new solution with the probability of P =

e�(4C/T );

7. Update the temperature, T ;



32

8. Repeat steps 3–7 above until an acceptable solution is found or you reach some

maximum number of iterations.

Over the duration of the algorithm the best result is recorded and updated.

3.3 Five–converter case results

For the first portion of this work, five WECs are placed in a 60-meter by 60-meter space

with a grid resolution of 10x10. This resolution equates to 100 di↵erent cells in which

a WEC can exist. Each algorithm uses a heave–constrained truncated cylinder with a

radius of one meter and a draft (distance below the water surface) of one meter.

Given the discretized space, the minimum separation distance allowed between WECs

must be defined. For the work presented here the minimum separation is deliberately set

at six meters based on previous research’s defined minimal distance of three times the

body’s diameter [23]. The wave climate is drawn from a Bretschneider spectrum with

a significant wave height of 2–meters and a modal frequency of 0.2 Hertz. The water

depth is set at 8–meters with unidirectional waves coming directly from the west. Each

algorithm is run a total of ten times and the objective function, interaction factor, and

number of function evaluations recorded for the result of each run.

3.3.1 Evolutionary Algorithm

In the EA, an initial parent population of 100 individuals is generated. Two random

locations in each solution vector are selected for mutation. A limit of 100 generations

without improvement is set and once satisfied, the layout with the best objective function
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is reported and the search process is terminated. From the ten di↵erent runs, the EA

obtained two di↵erent WEC configurations. Figure 3.1 shows the WEC configuration of

the layout with the best objective function.

Figure 3.1: Best found layout for an array of five converters

The second configuration obtained involved the WECs lining themselves up perpendic-

ular to the oncoming waves. Table 3.1 summarizes the objective functions, number of

function evaluations and interaction factors, q, obtained for each of the ten trials.

3.3.2 Genetic Algorithm

As with the EA, an initial parent population of 100 individuals is randomly generated

where each potential layout is comprised of five converters. For each of the ten GA runs,
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Table 3.1: Evolutionary algorithm simulation results for five converters

Run 1 Run 2 Run 3 Run 4 Run 5
Objective Function 3.7920 3.7960 3.7920 3.7920 3.7960

# of Evaluations 22500 12800 16200 12500 18700

Interaction Factor, q 1.01899 1.01790 1.01899 1.01899 1.01790

Run 6 Run 7 Run 8 Run 9 Run 10
Objective Function 3.7920 3.7920 3.7960 3.7920 3.7920

# of Evaluations 12800 31600 12000 18600 16200

Interaction Factor, q 1.01899 1.01899 1.01790 1.01899 1.01899

Table 3.2: Tunable GA parameters

# of parents 100
Elitism rate 10%

Crossover rate 80%
Mutation rate 0.02%

Convergence requirement 50%

the parameters for elitism, crossover, mutation, and convergence are shown in Table 3.2.

All the conducted trials utilize the same input parameters. The two overall best layouts

found by the GA are the same as those found by the EA (previously shown in Fig. 3.1).

The results for all ten runs with the GA are presented in Table 3.3.

3.3.3 Simulated Annealing

Unlike the EA and the GA, the simulated annealing algorithm only involves the ran-

dom generation of one potential layout that then goes through the simulated annealing

process. The temperature reduction results in high exploration of the search space at
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Table 3.3: Genetic algorithm simulation results for five converters

Run 1 Run 2 Run 3 Run 4 Run 5
Objective Function 3.8080 3.7960 3.7920 3.8025 3.8087

# of Evaluations 6687 14524 8850 5776 3288

Interaction Factor, q 1.01471 1.01790 1.01899 1.01618 1.01452

Run 6 Run 7 Run 8 Run 9 Run 10
Objective Function 3.8035 3.7960 3.7920 3.8012 3.7960

# of Evaluations 9555 6658 6432 7553 5487

Interaction Factor, q 1.01591 1.01790 1.01899 1.01653 1.01790

the beginning of the process and exploitation of layouts later in the process. The best

configuration achieved has the same layout as that attained by the EA and the GA with

the objective function evaluation of 3.7920 and the interaction factor of 1.01899. As

with the GA, the SA achieves the best result, as shown in Fig. 3.1, two out of ten runs.

Additionally, the SA found the same second best solution one out of the ten runs. Table

3.4 compiles the results for all the SA runs.

Table 3.4: Simulated annealing algorithm simulation results for five converters

Run 1 Run 2 Run 3 Run 4 Run 5
Objective Function 3.8053 3.8064 3.7920 3.8083 3.7960

# of Evaluations 8805 7277 5983 6186 8856

Interaction Factor, q 1.01543 1.01426 1.01899 1.01464 1.01790

Run 6 Run 7 Run 8 Run 9 Run 10
Objective Function 3.8049 3.7960 3.8046 3.7920 3.8068

# of Evaluations 4790 7207 1072 7486 6839

Interaction Factor, q 1.01553 1.01790 1.01561 1.01899 1.01501
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3.4 Five–converter array discussion

The performance of the three algorithms for the five–converter case is compared through

analysis of the objective function evaluations, interaction factors and number of evalua-

tions. It is important to remember that a minimized objective function is desired, which

correlates to a maximized interaction factor. The optimal layout shown in Fig. 3.1, with

the objective function of 3.7920 and interaction factor of 1.01899, was found by each of

the three algorithms. This WEC array configuration provides a 1.9% increase in power

when compared to the combined power of five WECs acting in isolation.

However, taking into account the frequency of finding the optimal solution over the

ten runs, the EA shows a higher performance compared to the GA and SA. Attaining

this solution seven out of the ten runs, the EA has the lowest mean objective function

evaluation and although the GA and SA both found the same best result two out of ten

runs, the GA performed slightly better than the SA. Additionally, as shown in Table 3.5,

the GA was able to find the second best objective function (3.7960) three times in ten

runs compared to two times for the SA.

Table 3.5: Objective function evaluation comparison

Objective Function Evaluation
Mean Algorithm

Best
Overall
Best

Frequency
of Overall
Best

Evolutionary Algorithm 3.7932 3.7920 7/10
Genetic Algorithm 3.7999 3.7920 3.7920 2/10

Simulated Annealing Algorithm 3.8012 3.7920 2/10
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Similarly, the standard deviation analysis of the algorithm’s interaction factors, displayed

in Table 6, reveals that the EA is more consistent than the GA and SA. The mean and

standard deviation of solutions’ interaction factors, generated by the EA, GA and SA,

confirm that the EA is better at finding maximized interaction factors than GA and SA

when five converters are involved, while the GA is slightly more successful than the SA.

Table 3.6: Interaction factor comparison

Interaction factor, q
Mean Standard

Deviation
Algorithm
Best

Overall
Best

Evolutionary Algorithm 1.01866 0.0005 1.01899
Genetic Algorithm 1.01695 0.0016 1.01899 1.01899

Simulated Annealing Algorithm 1.01643 0.0018 1.01899

Regarding the number of evaluations per run required to generate an optimal solution,

the EA presents a significantly higher mean than the GA and SA. As shown in Table 3.7,

while the EA requires an average of 18390 function evaluations to find a solution, the

GA and SA only need 7481 and 6450 iterations respectively, on average, to generate a

solution.

Table 3.7: Comparison of function evaluations

Number of Function Evaluations Per Run
Mean Minimum Maximum

Evolutionary Algorithm 18390 12000 31600
Genetic Algorithm 7481 3288 14524

Simulated Annealing Algorithm 6450 1072 8856

Examining the results of all three algorithms, for the five–converter experiment, the

EA yields better solutions than the GA and SA due to the EA’s ability to thoroughly
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explore the solution space. The SA performs the worst of the implemented algorithms

— though not by much when compared to the GA. Limiting the number of WECs, in

a 10x10 discretized space, to only five creates a solution space with just over 9x(109)

possible configurations. If the number of converters is increased, then the number of

potential configuration also increases. The next section explores the obtained results of

each algorithm if the number of WECs is increased in the same discretized space.

3.5 Exploration of increased number of converters

In order to better understand the di↵erence in results from implementation of an EA,

GA or SA in a WEC array optimization problem, five runs with 10 and 25 WECs are

conducted for each algorithm. Other than the number of converters placed in the space,

the parameters are the same as those discussed in Section 3. Similar to the five converter

case, the performance of the three algorithms with an increased number of converters

is compared through analysis of the objective function, and interaction factor. As pre-

viously noted, none of the algorithms converged to the same layout or had the same

objective function. The best layouts are obtained using the GA and have objective func-

tion evaluations of 3.018 and 2.2741 with corresponding interaction factors of 1.02100

and 1.00462. Table 3.8 reports the objective function evaluation information from the

di↵erent algorithms when 10 and 25 WECs are involved.

All of the layouts generated are unique between the three algorithms. Figures 3.2(a) and

3.2(b) show the configurations which yield the best objective function value between the

three algorithms. Again, these layouts were generated by the GA. Table 3.9 confirms

the performance of the GA, in that in addition to obtaining the best mean and overall
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Table 3.8: Objective function evaluation comparison for 10 & 25 converter arrays

10 Converters — Objective Function
Mean Algorithm

Best
Overall Best

Evolutionary Algorithm 3.0321 3.0287
Genetic Algorithm 3.0222 3.0180 3.0180

Simulated Annealing Algorithm 3.0330 3.0237

25 Converters — Objective Function
Mean Algorithm

Best
Overall Best

Evolutionary Algorithm 2.3162 2.3042
Genetic Algorithm 2.2794 2.2741 2.2741

Simulated Annealing Algorithm 2.3388 2.3315

configuration, the GA also has the smallest standard deviation. As the number of WECs

increases, the GA gives significantly greater interaction factors on average than the EA

and SA, as indicated by the mean analysis results.

(a) 10 converters (b) 25 converters

Figure 3.2: Optimal layouts for arrays with 10 and 25 converters
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Table 3.9: Interaction factor comparison for 10 & 25 converters arrays

10 Converters — Interaction Factors
Mean Standard

Deviation
Algorithm
Best

Overall
Best

Evolutionary Algorithm 1.01625 0.0011 1.01714
Genetic Algorithm 1.01958 0.0010 1.02100 1.02100

Simulated Annealing Algorithm 1.01599 0.0028 1.01907

25 Converters — Interaction Factors
Mean Standard

Deviation
Algorithm
Best

Overall
Best

Evolutionary Algorithm 0.98638 0.0045 0.99152
Genetic Algorithm 1.00232 0.0017 1.00462 1.00462

Simulated Annealing Algorithm 0.97684 0.0030 0.97991

These interaction factors indicate that the formation of WECs shown in Fig. 3.2 produce

2.1% more power with 10 converters and 0.46% more power with 25 converters than the

combined power that would be produced by equivalent number of WECs acting in iso-

lation. The results from the mean analysis of the objective functions obtained with the

three algorithms show that the GA is also more robust at finding a minimized objective

function evaluation, while the SA has the worst average result. Furthermore, while the

percent yields indicated by the 25 converter are minuscule, this is likely because the

physical space is constrained. The take away of this percent increase should not be it’s

numerical value, but rather that the algorithm was able to find a configuration, even in

a constrained space, which yielded in interaction factor greater than one.

This further exploration demonstrates that the GA is more e�cient when used in an

increased search space. In fact, it shows that the GA is globally the best performing al-

gorithm among the three compared, while SA has the worst performance for all numbers
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of WECs considered. Figure 3.3 portrays the interaction factor results of the di↵erent

algorithms.

Figure 3.3: Algorithm interaction factor comparison

The figure indicates that for a given space with 100 discrete potential locations for WEC

placement, the EA will perform better with fewer converters and consequently a smaller

number of potential configurations; however, when the number of WECs and associated

number of potential configurations is increased, the GA’s performance becomes compar-

atively better. Specifically, for the case with 25 converters, the EA and SA both return

layouts with interaction factors less than one indicating negative interaction, but the GA

is able to still return layouts with interaction factors greater than one.
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3.6 Conclusion

This chapter proposed three possible methods, an EA, GA, and SA, for determining the

best configuration of a defined number of WECs in a discretized space.

The first case, using five truncated cylinders, was designed to compare again previous

work in array optimization. It is found that the EA performs better than the GA and

the SA and is able to find the best result seven out of its ten runs; however, the EA

does average a higher number of function evaluations per run. The GA and the SA both

also found the optimal arrangement, but only twice apiece out of their respective ten

runs. Additionally, the EA has a smaller standard deviation when compared to the other

algorithms. The SA performed the worst, but was relatively close in performance to the

GA. The best result found for five WECs had in interaction factor of 1.01899 which

correlates to a power increase of 1.9% when compared to five WECs acting in isolation.

To investigate what e↵ect that the number of converters had on the di↵erent algorithms’

performance, a continuation study was conducted where 10 and 25 devises are consid-

ered. For this case each algorithm was run five times. Of the fourteen total runs, none

of the converged layouts are equivalent or have the same objective function. Unlike the

case with five WECs, this case has the GA performing the best with the lowest mean

and standard deviation values of objective function evaluations and interaction factors.

In addition, the GA returns the best overall results with an interaction factor of 1.02100

and 1.00462 respectively. The SA once again performs the worst of the three algorithms.
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Considering all the di↵erent WEC cases, it is determined that the EA performs better

than the GA and the SA when the search space is relatively small due to its ability to

explore the space. However, when the search space grows, the GA becomes the better

option for finding an optimal configuration of WECs. This information demonstrates

the importance of an optimization algorithm’s need to both explore the solution space

and exploit specific potential solutions. The wave energy industry has many hurdles to

overcome as it moves towards WEC deployment and grid integration. Consequently,

research regarding array deployment needs to consider the many influencing factors and

needs to utilize algorithms well suited for the problem.
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Chapter 4: Real-Coded Genetic Algorithm

4.1 Introduction

The results from the binary GA demonstrate the need for further investigation regarding

the optimal placement of WECs in an array since potential power development may have

been restricted by the discrete converter placement of our Binary GA. Accordingly, this

chapter describes the process of a real–coded (also referred to as continuous) GA and

the results we found using this method. This method is called real–coded because the

converters are placed at coordinates based on any real value within the solution space.

We created this real–coded genetic algorithm (GA) approach to determine optimal WEC

array designs that incorporate cost information in addition to generated power. In our

prior work (using a discretized GA method), we preliminarily explored the e↵ects of

WEC spacing. In continuation, this chapter will present a previously unexplored, real–

coded approach that allows for the optimization of WEC spacing in a continuous solution

space.

4.2 Real–coded genetic algorithm overview

A real–coded GA generates potentially optimal solutions via a representation of the bio-

logical reproduction process, wherein children solutions are comprised of components of

the parent solutions and are potentially subject to prescribed mutation. The method-

ology of the real-coded GA is similar to that of the binary GA with several key di↵erences.
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The initial parent population, generation zero, is created by randomly scattering a de-

fined number of converters into the solution space. To facilitate comparison to previous

work, the space is defined as a 60x60 meter square and the number of WECs is limited

to five. Each WEC location is specified by a random X and Y coordinate that is confined

within the space; a critical di↵erence between the continuous GA and the binary GA

is that in the continuous algorithm, locations can take any value on a continuous scale

(abiding by spatial constraints). That is, WEC locations are not limited to discrete

coordinates. Throughout the entire execution of the algorithm, converter placement is

only accepted when no physical overlap exists with any converters already in the space.

Once the initial parents are generated, their objective function evaluations are found and

sorted from lowest (best) to highest (worst). At this point the reproduction phase begins.

In our presented continuous GA, the children set is built over several stages — elitism,

mutation of the elite, crossover and mutation, and random solution generation. Elitism

occurs by cloning a set number of the best parent solutions directly into the children

solution set. Doing so ensures that the global best solution in the parent population will

not be lost during the GA process. In addition to these cloned solutions, a mutated set

of cloned solutions is also added to the children set; the mutation process is described

later in this section.

With elitism complete, crossover and mutation is conducted on a defined upper percent-

age of the parent solution set. Since previous research (including our previous binary

GA work presented in Chapter 2 and 3) includes a fixed number of WECs, crossover

is performed such that the number of converters is defined and retained. To accomplish
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this, we find pairs of parents using rank roulette selection as described in [59]. Once

the crossover and mutation pool has been filled with the selected parent pairs generated

through the rank roulette process, children are created as follows. First, based on a set

probability, child solutions are made by combining WEC locations from two selected

parents. In other words, the two children solutions created by a parent solution pair

contain locations of WECs from each of the parents. To avoid a converter being placed

in physical contact with another pre-existing converter, only non-overlapping converters

are eligible for crossover.

Figure 4.1 demonstrates the utilized method of crossover. In this scenario all points in

both parent solutions are available for crossover and two points will be swapped — the

second and fourth points from the first parent and the first and second points from the

second parent. Thus, the first child is comprised of points one, three and five from the

first parent as well as points one and two from the second parent. Conversely, the second

child contains points three, four and five from the second parent and points two and four

from the first parent.

Figure 4.1: Real GA crossover method
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Once the crossover children are created, they are potentially subject to mutation. If

selected for mutation, based on a defined probability, a number of WECs in a child so-

lution (up to a defined fractional amount of the total number of converters) are moved

to new random locations in the solution space. Implementation of prescribed mutation,

combined with crossover, allows for better exploration of the solution space to avoid

being stuck in local minima.

The children set is now comprised of the elite group, the mutated elite group, and the

solutions generated from crossover and mutation. In the final stage of the reproduction

phase random solutions are introduced. These solutions are created in the same manner

as the initial parent population and are incorporated into the children population to

again allow the algorithm further exploration of the solution space.

Throughout the execution of the algorithm, new solutions (unique to a generation) are

tracked so that only their objective functions need evaluation. In this manner, the

number of function evaluations is reduced by only evaluating solutions that are di↵erent

from the previous generation. With a children solution set created, the objective function

is evaluated for each solution and a check for convergence is conducted. Convergence is

determined by the number of elapsed generations without improvement in the evaluation

of the best layouts. Once this criterion is satisfied, the best solution will be reported;

however, prior to convergence, the children set becomes the parent set and the process

repeats. An overview of the algorithm is represented in Fig. 4.2. This flow is the same

as Fig. 2.3 with one particular update. In the reproduction phase we implemented an

additional mutation component to the elitism component.
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Figure 4.2: Real–coded GA flowchart
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4.3 Objective Function Formulation

To calculate power, the behavior of an isolated WEC is first considered using the linear

wave–body software WAMIT [45]. The WEC is subjected to incident waves from multiple

directions in a sea–state with a limited water depth and a range of wave periods. With the

hydrodynamic information of the single converter obtained from WAMIT, the di↵raction

coe�cient matrix, force transfer matrix, and radiated wave coe�cients are found for the

single WEC. The process is explained more fully in Chapter 2. To best compare against

our previous binary GA work we used the objective function, power calculation, and cost

equation shown in Eq. 2.1, 2.2, and 2.3 respectively.

4.4 Problem Formulation

The WEC used in this research is the same converter as is modeled in [11, 25], and is

consistent with the WEC modeled in previous work and in the preceding chapters [34].

This WEC is a truncated cylinder constrained in the vertical direction (heave) with a

radius of one meter and a draft of one meter. Placed in water with a depth of eight

meters, these parameters are a scaled representation of an array of 10–meter diameter

converters in a water depth of 40 meters [34].

When placed in an array, the WECs experience unidirectional, irregular waves defined

by a Bretschneider spectrum. This spectrum is generated with a significant wave height

of two meters, a modal frequency of 0.2 Hertz, and periods in half–second increments

distributed between 4 and 8 seconds. Two di↵erent test scenarios, each with 5 converters,

are conducted. The first allows the WECs to be placed anywhere in the solution space
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with the only requirement being that no physical overlap occurs. Additionally, since

WECs deployed in the ocean will most likely need to be separated from neighboring

WECs to allow OM access and to minimize harmful physical interaction, the second

scenario imposes a minimum separation distance of three times the diameter (six meters

center–to–center) as is proposed in [23]. Tables 4.1 and 4.2 show the tunable parameters

for both scenarios.

Table 4.1: Test scenario parameters

Scenario # of WECs Solution Space [m] Minimum Separation Distance
1 5 60 x 60 – –
2 5 60 x 60 6 [m]

Table 4.2: Tunable GA parameters

Scenario 1 Scenario 2
# of Parents 100 100
Elitism Rate 3% 5%
Crossover & Mutation Rate 81% 75%
Probability of Mutation 35% 35%
Max Percentage of WECs to Mu-
tate

40% 40%

Convergence Requirement (Gener-
ations Without Improvement)

75 75

For the problem presented here, with a small and constant number of WECs in a rela-

tively large space, the main parameters that were tuned to achieve the presented results

are the elitism rate (and consequently the crossover and mutation rate), the probabil-

ity of mutation, and, to a small extent, the probability of crossover. The convergence

requirement was empirically determined, and set at 75 generations without improvement.
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Using five converters allows for results which can be readily compared against previous

work that use the same number of converters [34, 25]. The size of the solution space is

defined to match the maximum sized space from the binary GA work, 60 x 60 meters.

4.5 Results and Discussion

As GAs are inherently stochastic and the number of potential array arrangements in-

finite, each scenario was conducted multiple times and the best results, based on the

objective function evaluation, are reported here.

The overall best result between the two scenarios is shown in Fig. 4.3(a). For all the

following layout images in this chapter, the unidirectional incident waves are traveling

due East (from left to right). With no minimum separation distance imposed, the best

layout is achieved when the WECs line themselves up in pairs, parallel to the oncoming

incident wave. This layout is similar to the best layout found by the three-meter mini-

mum separation distance case of the binary GA (Fig. 2.6(a)). The e↵ect of this layout

on the wave field is portrayed in Fig. 4.3(b).

With the incident waves approaching from the left, the center–to–center distance be-

tween paired WECs in the o↵shore direction is approximately three meters and the

center–to–center distance between up–wave WECs in the alongshore direction is about

eight and one–half meters. While this scenario allows the converters to be closer than

three meters (unlike in the binary case) the optimal result is found when the WECs are

separated from each other by a small amount in the o↵shore direction in order to take
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(a) Layout (b) E↵ect on the wave field

Figure 4.3: Best layout achieved for the first scenario

advantage of the radiated waves, and far enough apart in the alongshore direction to

benefit from the di↵racted waves.

The next scenario considered includes a minimum separation distance in order to model

realistic array deployment and to compare against the results from the scenario with

no spacing constraint. For this scenario, the two layouts with the best function evalua-

tions will be examined. As with the binary GA, when the WECs are required to stay a

certain distance apart, the resulting WEC placement transitions away from capitalizing

on radiated waves to solely taking advantage of the di↵racted waves since the radiated

waves dissipate quickly with distance from a converter. Figure 4.4(a) shows the layout

with the best objective function evaluation given the spacing constraint. Figure 4.4(b)

demonstrates the e↵ect that this layout has on the wave field.
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(a) Layout (b) E↵ect on the wave field

Figure 4.4: Best layout achieved for the second scenario

Examining the wave field e↵ect, it is observed that within the two clusters, WECs ben-

efit from each other’s di↵racted waves and that, in addition, the group of converters

further down–wave also benefit from the up-wave pair of WECs. It is worth noting that

the layout that achieves the second best objective function evaluation, with the spacing

constraint imposed, demonstrates the general shape of a layout that occurs relatively

often between both scenarios.

The grouping of four WECs, close to equally spaced, at an angle slightly o↵set from

the perpendicular to the incident wave occurs often in the results of this study. Of this

type of result, the best, and the second overall best for the second scenario, has a 0.09

percentage di↵erence in objective function evaluation when compared to the second sce-

nario’s best overall result. Comparatively, the worst of this type of layout has only a

0.48 percent di↵erence when compared to the function evaluation of the second scenario’s

overall best. Because these values are small we can see that, though the layouts may
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(a) Layout (b) E↵ect on the wave field

Figure 4.5: Second best layout achieved for the second scenario

di↵er in shape, they are generating a similar amount of power. The angled alignment

of the grouped converters is allowing an improved cascading interaction e↵ect due to

di↵racted waves. Since the potential locations for WECs is infinite, if the WECs line up

exactly perpendicular to the incident wave, they would need precise placement in order

to benefit from the di↵racted waves of neighboring WECs. However, with the angled

placement shown, the converters further down-wave can capture the di↵racted waves

of more up–wave WECs. This o↵set angle is also observed in the results of Child and

Venugopal and DNV–GL [23, 34].

The isolated fifth converter seems to be deemed unnecessary by the algorithm in regards

to array design. Variation in function evaluation between similar layouts is primarily

a↵ected by the grouped WECs and less by the isolated WEC. Table 4.3 shows the

objective function evaluations and the interaction factors for the results of both scenarios.
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Table 4.3: Objective function evaluations and interaction factors of presented results

Scenario 1 Scenario 2a Scenario 2b
Objective Function Evaluation 3.7629 3.7690 3.7725

Interaction Factor (q) 1.0269 1.0252 1.0243

If the WEC spacing is left unconstrained, then the algorithm finds a layout that has a

power improvement of 2.7% when compared to the power produced by five WECs acting

in isolation. Once a spacing constraint is put in place, then the algorithm returns a

layout with a 2.5% power increase. Table 4.4 compares the results presented here with

the interaction factors of previous work. For the results shown from the parabolic inter-

section method and MATLAB’s GA, the layouts obtained from [34] (shown in Fig. 1.2(a)

and 1.2(b) respectively) were calculated using the method presented in this chapter for

a more accurate comparison.

Table 4.4: Objective function evaluations and interaction factors of presented results
compared against previous research

Objective
Function
Evaluation

Interaction
Factor (q)

Power
Increase

MATLAB’s GA 3.8864 0.9942 -0.6%
Parabolic Intersection 3.8793 0.9961 -0.4%

Binary GA (6m minimum spacing) 3.7920 1.0190 1.9%
Binary GA (3m minimum spacing) 3.7737 1.0239 2.4%
Scenario 2 (6m minimum spacing) 3.7690 1.0252 2.5%
Scenario 1 (no spacing constraint) 3.7629 1.0269 2.7%
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The table shows clear improvement with the introduction of the real–coded GA. The

results of the two scenarios found layouts that obtain a better increase in power pro-

duction when compared to the best performing binary GA result. In fact, across all the

runs conducted, both scenarios consistently achieved layouts with better results than

their counterparts using the binary GA.

4.6 Conclusion

Research in array configuration design has solely focused on maximizing power pro-

duction and only mentions the need for incorporating cost. Additionally, implemented

methods have primarily been based on user-decided layouts which are dependent on

many assumptions that are yet to be well understood or quantified. Our previous work,

discussed in Chapter 2 presents the use of a binary genetic algorithm that includes array

cost in the objective function. These preliminary results indicate that converters need

the opportunity to be placed anywhere in the solution space.

Consequently, the real–coded GA presented here demonstrates the advantage of imple-

menting non–discretized space. Allowing WECs to select any location in the stipulated

space, the best overall layout achieves a 2.7% increase in power over the power that

would have been produced if the five WECs were acting alone. This is a 12.5% increase

over the best result found using the binary GA method. Even when a six–meter spacing

constraint is set in place around the WECs, the real–coded GA obtains an array that

performs 4.2% better than the best result from the Binary GA.
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Similar to the binary GA, when the minimum separation distance is small or nonexis-

tent, the WECs take advantage of neighboring converters’ radiated waves, but transition

to capitalizing on di↵racted waves when imposed with minimum spacing requirements.

Since developers will not want their WECs physically interacting with each other, layouts

will not likely be deployed to take advantage of the radiated waves unless the WECs can

be fixed to the ocean floor. As another alternative, if a WEC was created with multiple

components that acted interdependently to generate power, those individual generators

could benefit from the radiated waves and positioning would be important. When the

objective function evaluations and interaction factors are compared to other research in

array design, the real–coded GA outperforms in both the unconstrained and constrained

scenarios.

The layout configurations from the algorithm vary due to a highly multi–modal solution

space. Due to seemingly minor di↵erences in WEC positioning, results from two di↵er-

ent runs can have similar looking layouts, but di↵erent objective function evaluations.

However, for the layouts from the second scenario with groupings of four, the results

have a low percentage di↵erence from the global best solution. This points towards a

more robust design than the global best layout.

In the second scenario’s second best layout (shown in Fig. 4.5), with the minimum spac-

ing constraint in place, the fifth converter does not find a manner of incorporating itself

into the array. GAs do not guarantee global optimality and it is possible that this fifth

converter does not follow a similar trend to the other WECs because the algorithm

was unable to find a better layout before reaching convergence. However, given the

convergence criteria and the consistency of the generated layouts over the many trials,
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the potential for improvement is not likely. Also, this indicates the need for allowing

a variable number of WECs in order to find the optimal number for a defined space.

Additionally, constraining the number of WECs to a set value loses relational WEC in-

formation in the implemented crossover method, but allowing for a variable number of

converters and implementing multi–point crossover would help alleviate this issue.

Finally, with the constant number of converters, cost is unable to influence the layout

configuration with the current objective function equation. Through better inclusion

and investigation of influencing elements, the application of a continuous algorithm is

advantageous for determining the optimal spacing of WEC arrays, through the ability

of the algorithm to dictate the optimal WEC placement in the solution space.
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Part II

Investigation of Layout Design

Influences
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Chapter 5: Binary Genetic Algorithm Row Spacing Study

5.1 Introduction

With the many potential factors impacting arrays, it is vital that tools are created

that realistically inform developers about the deployment of optimal WEC farms. To

best account for the factors involved, it is useful and necessary to utilize optimization

techniques. However, at this stage in WEC array design research, most work assumes

prescribed layouts based on basic assumptions. Little research has been conducted re-

garding the use of optimization methods for array configuration. As an extension of our

optimization work discussed in prior chapters, this chapter investigates how generated

power is influenced by the separation distance between two rows of parallel wave energy

converters perpendicular to a unidirectional wave field.

A majority of research investigating the configuration of arrays use assumed layouts

based on geometric shapes such as squares, triangles, diamonds, stars, single rows, and

parallel o↵set rows [14, 15, 16, 17, 18]. Beyond the research involving assumed layouts,

there is some work investigating the use of optimization methods for determining layouts.

In Chapter 2, we introduced a customized genetic algorithm method used for determin-

ing optimal arrangements of five WECs (similar to those converters used in [34]) in a

discrete space. This work is novel in the implementation of a customized genetic al-

gorithm, and the inclusion of cost in the objective function equation [11, 25]. Further
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investigation of varying numbers of WECs reveals the WECs arranging themselves in

two parallel lines perpendicular to oncoming wave field with a consistent spacing between

rows. Figure 5.1 shows an example of the spacing seen with 20 converters (unidirectional

waves are coming from the the left). We created this layout based on results we saw

from the introduction of multiple converters in Chapter 3. To better understand this

spacing e↵ect, a specific study with 20 WECs was performed.

Figure 5.1: Optimal arrangement found for 20 WECs

5.2 Study Parameters

For this study, the scaled converter modeled is a truncated cylinder constrained in the

heave direction. The radius is one meter and the draft (distance of the WEC below the

free water surface) is one meter. As in Chapter 2, these WECs are placed in a water

depth of eight meters and subject to a wave field derived from a Bretschneider spectrum

that has a modal frequency of 0.2 Hertz and a significant wave height of two meters.
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In this chapter, the interaction factor of configurations at di↵erent prescribed spacing

are compared. The scaled converter modeled, the parameters (water depth and wave

spectrum), and the objective function are the same as those used in Chapters 2, 3, and

4. The interaction factor, q, is determined using Eq. 1.1. The initial starting point of the

study fixes the up–wave row of WECs at the front of the space with six meters between

each converter in the alongshore or y direction. The secondary row is initially placed six

meters down–wave from the fixed row and subsequently moved incrementally to the right.

Figure 5.2: Starting point for the rows of WECs

Several di↵erent scenarios are considered. In the first, the space is constrained to 60 x

60 meters (shown in Figure 5.2) and the location with the maximum interaction factor

is determined. In the second scenario we increase the space in the o↵shore direction

to determine if a more optimal spacing exists beyond that which is found in the first

scenario. The third scenario evaluates the trend of the interaction factor as the space

changes. From these results a maximum interaction factor of 1.0334 is found at a spacing

of 51 meters and is shown in Figure 5.3. The second best interaction factor of 1.0284
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is located at a spacing of 30.75 meters. The interaction factors found are potentially

limited by the defined nature of the layouts in the constrained space. It also appears

that the rows of WECs are attempting to be placed at opposite ends of the space likely

to minimize negative interactions between the rows.

Figure 5.3: Optimal separation spacing in a 60x60 meter space

5.3 Row Spacing Study

For the first scenario, the optimal spacing is found in a 60x60 meter space. Figure 5.4

shows the interaction factor as a function of the distance, in meters, between the con-

verter rows. The results are evaluated at quarter meter intervals. The interaction factor

fluctuates greatly across the space and shows that specific placement of the converter

rows is required to avoid destructive interaction. Also, since the array is experiencing

irregular waves the larger increases in the interaction factor are like correlated to oncom-

ing wave groups.
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Figure 5.4: Interaction factor as a function of distance between rows for a 60x60 meter
space

When the distance o↵shore is increased from 60 meters to 700 meters, the results ob-

tained are shown in Figure 5.5. For these results the interaction factors are evaluated at

one meter intervals. With the increased distance o↵shore, the maximum interaction fac-

tor of 1.0403 occurs at a separation distance of 270 meters. The 60x60 meter case shows

that the row spacing is important and with the one meter intervals for the 60x700 case

there is the possibility that some spacings were missed which could have resulted in an

increased interaction factors. Again, the larger increases (and decreases) in interaction

factor are likely connected with the incident wave groups.

As an alternative consideration, the row of WECs to be moved are o↵set in the along-

shore direction - shown in Figure 5.6. Resulting behavior of the interaction factors for

the 60 m x 700 m space is shown in Figure 5.7.
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Figure 5.5: Interaction factor as a function of distance between rows for a 60x700 meter
space

Figure 5.6: Alternative starting point for the rows of WECs
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Figure 5.7: Interaction factor as a function of distance between o↵set rows for a 60x700
meter space

The o↵set lines yield a maximum interaction factor of 1.401 at a spacing of 212 meters

and again at 270 meters. Lastly, the interaction factors every two meters are found

for a 60 m x 1400 m space. The maximum interaction factor (and its location) is the

same as the 60 m x 700 m case, but these results are generated to observe the overall

behavior of the interaction factor as the separation distance increases. The smoothed

data approaches an interaction factor of approximately 1.015.

Figure 5.8: Smoothed interaction factor as separation distance increases
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5.4 Discussion

Examining the results, beginning with the 60 x 60 meter case, a separation distance

similar to that found using the binary GA (shown in Figure 1) is found at about 30

meters, but a better solution is found at 51 meters. The reason that the binary GA does

not find the solution at 51 meters is because of its discretized nature. The arrangement

shown in Figure 4, with an optimal distance of 51 meters, yields an increase in power of

3.34%. Once the distance o↵shore is increased to search for a more optimal separation

distance, this maximum interaction factor is found to yield a 4.03% power increase (as

seen in Figure 5). When the rows are set as o↵set the results are found to be a very

similar to those of the inline rows. These results indicate that given two parallel lines

of WECs in an array, the distance between these rows can yield up to a 4% increase

in power, but that achieving such an increase is highly dependent on having optimal

spacing between rows.

The interaction factor’s trend demonstrates that, while the the optimal spacing distance

occurs between 200 and 300 meters, placing the WECs even farther apart results in

interaction factors that are more robust — having a consistently higher average interac-

tion factor. (Shown in observed in Figure 5.5) This consistent higher interaction factor

is likely due to the positive interactions within the the two separate lines of WECs, and

not connected to interactions between the two lines. The WECs would likely perform

better if placed in a single line of twenty WECs perpendicular to the incident wave.
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5.5 Conclusion

Influencing developed power, configuration of WECs within an array is an important

determination. We introduced a novel algorithm for determining optimal WEC layouts,

and as an extension of this work, a pattern was observed where arrays of WECs are

formed with two parallel lines perpendicular to the oncoming waves. Further investi-

gating this observation reveals that there are specific separation distances where the

interaction factor (defined in Eq. 1.1) is maximized. To achieve interaction factors that

have a consistent average higher than one, the parallel lines must be adequately sepa-

rated. The necessary separation distance indicates that the layout isn’t optimal, but that

the individual rows achieve increases in power. The fixed layouts and the constrained

space limit the potential interaction factors and don’t guarantee that the parallel lines

are an optimal layout; however, these results do provide a preliminary understanding the

influence of spacing on developed power. These solutions also reinforce our transition to

a real-coded algorithm to allow the algorithm to determine the spacing.
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Chapter 6: Array Optimization of Fixed Oscillating Water Columns

for Active WEC Control

6.1 Introduction

It is expected that in addition to layout optimization, active control scenarios must be

implemented to fully maximize power production of an array. Consequently, it is neces-

sary that we consider optimal layouts in conjunction with active WEC control. As a part

of the Advanced Laboratory and Field Arrays (ALFA) project (a U.S. DOE project),

we have been determining optimal WEC layouts of an oscillating water column (OWC)

array.

In this chapter we discuss an overview of our task within the project; prior optimization

approaches to WEC array design; the tank–validated, boundary element method (BEM)

model of our OWC; the optimal layouts generated by our problem specific genetic al-

gorithm (GA); and our initial analysis of the power output sensitivity due to damping

control and array design. The achieved layouts will indicate the influence of sea state on

WEC layouts configuration and will show the need for active WEC control to enhance

performance.
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6.2 Project Overview

Of the ALFA project’s many directives, we are specifically investigating the enhancement

of WEC array performance. The goals of our task include generating optimal configura-

tions of a WEC array, developing control strategies for the WECs within these arrays,

and validating the use of these control strategies on an optimized array through tank

testing.

Because the WECs being constructed are only intended for tank testing and the number

of converters is fixed at five, cost has been excluded from consideration in this study and

instead we are focusing on power development and the interaction factor. We will validate

the array optimization and control results against tank test data later this year. More

information can be found on the modeling and physical testing of our chosen WEC in [2].

An objective of our work is to better understand the integration of active control and ar-

ray optimization. With the stochasticity of sea conditions, actively controlling converters

within an array is believed to likely have greater influence on increasing power produc-

tion than what can be achieved through array optimization of non–controlled converters

[21, 22]. Active WEC control has been shown to e↵ectively increase power production

[26]; consequently, future array design should include such control to accurately deter-

mine layouts that maximize power. Unfortunately a model does not currently exist that

includes both between–WEC wave interaction and active control. Our work will serve

as a basis for the future inclusion of active control into an optimization scheme.
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6.3 Assumptions

Research has only recently begun intentionally considering optimization methods for

WEC layout design and the work presented in this chapter furthers our novel approach

of utilizing a custom genetic algorithm [11, 40]. We are not looking at designing for a

specific type of WEC or a specific location, but are creating a framework that allows for

a high level of adjustment specific to the problem of WEC layout configuration.

For the project discussed in this chapter we are utilizing OWCs that have intentionally

been designed to be simple – allowing us to inexpensively build five WECs and their

associated hardware. These WECs are not designed to be scaled for commercial imple-

mentation at any point in the future. To enhance our ability at observing the connection

between array design and WEC control, the OWCs will be fixed to the tank floor.

6.4 Current Optimization Scheme

The complexity of the array optimization problem is not limited to determining the power

produced by an array, but should also include alternative factors which might alter an

array’s design. Some of these, such as cost and active WEC control, will likely have

significant influence on a layout. We have developed a genetic algorithm (GA) specific

to the problem of WEC array design that furthers the work of existing research. Our GA

currently allows for the inclusion of array cost in addition to power [11, 40]; however,

since the number of converters being tested in this study is fixed and the converters

are solely intended for tank testing, we have simplified the objective function to only

consider generated power. This will aid in moving towards including WEC control in
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the objective function through variable WEC damping. With a fixed number of WECs

intended for tank testing, our optimization centers around the maximization of power.

As such the objective function we are seeking to minimize is

ObjFun = �P20 (6.1)

where P20 is the power generated by an array over a 20 year lifespan. The algorithm is

visually shown in Fig. 6.1.

6.5 OWC Modeling

We have previously produced layouts of scaled heaving point absorbers in both the dis-

crete and continuous spaces [11, 40]. For this project, five physical oscillating water

columns (OWCs) have been constructed for layout optimization and control. Figure 6.2

shows one of these WECs and its dimensions. The remaining four converters are built

in the same manner. We chose to construct and utilize these converters because of their

inexpensive nature and consequently our ability to build five WECs for better array

evaluation. Additionally, the design of these converters allows for more manageable con-

trollability because the electronic hardware is out of water.

Our OWC operates by having a hollow cylinder extend both above and below the wa-

ter surface. As the water rises and falls, air is forced in and out of the hollow interior

through the cylinder’s narrower, above–water component. If this WEC were to be used

as an energy producer, the flow of air would likely turn a bidirectional turbine which

would then generate electricity. For our work, a butterfly valve is used in place of a tur-
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Figure 6.1: Optimization process overview



74

(a) Photo of OWCs being built
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bine due to its measurability and controllability. This valve can rotate between 0� and

90� where 0� indicates the valve completely closed and 90� indicates a completely open

valve. Specific details on this can be found in the corresponding study by Bosma et al. [2].

To evaluate potential layouts of OWCs in search of an optimal solution, we model the

OWC shown in Fig. 6.2 within WAMIT. Developed by Evans [60] and described in

[61, 62, 63, 64], the OWC is modeled using a piston approach. This method treats the

mass of water moving inside the cylinder as a point absorber. Since our OWCs are to

be secured to the tank floor, the WAMIT model needs only consider the single body of

the water column constrained in heave.

The water depth and desired wave periods are used as inputs into WAMIT along with

the radius, draft, height and density of the representative point absorber. Mwave cre-

ates these necessary input files for WAMIT as a preprocessor and, once WAMIT has

completed running, processes the output data to formulate an object containing the in-

formation needed to analytically determine an array’s power output. The theory behind

mwave is described in [65, 20].

WAMIT details how a converter behaves for a range of wave periods and directions at

a single water depth. It is run once at the beginning of the optimization process —

unless a physical WEC parameter is changed or a di↵erent sea condition is desired (i.e.

di↵ering draft or water depth). Showing the response amplitude operator (RAO) output

from WAMIT and the experimentally determined RAO, Fig. 6.3 indicates the viability

of our developed BEM model. The RAO indicates the behavior of a WEC in a given

sea state and Fig. 6.3 shows that the behavior of our modeled converter is similar to the
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behavior of the actual WEC in the wave tank. Hs indicates di↵erent significant wave

heights that the dominant periods are evaluated at. Full details on the initial tank test

of a single OWC can be found in [2].

Figure 6.3: RAO comparison between WAMIT results and tank data

The output of WAMIT is needed by the power calculation within mwave. Mwave, and

consequently the outputted MATLAB hydrobody, are called for every uniquely created

layout within the real-coded GA.

6.6 Array Optimization

With the information derived from WAMIT, we begin the real–coded GA process. Even

without guaranteeing global optimality, our GA method was, and is continually being,

developed because of its ability to handle the stochasticity surrounding WEC array
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optimization. The real–coded GA flowchart in Fig. 6.1 shows the progression of steps.

Table 6.1 contains the tunable parameters within the GA and the assigned values for

the work presented in this chapter. Detailed specifics on the workings of our real-coded

GA can be found in Chapter 4 and [40].

Table 6.1: Tunable GA parameters
# Of Parents 100

Elitism Rate 2%

Crossover & Mutation Rate 74%

Crossover Probability 100%

Mutation Probability 35%

Max # of WECs to Mutate 2

Convergence Requirement
(generations without im-
provement)

100

Since every generation of children becomes a parent generation and continues the repro-

duction cycle, a convergence criteria is defined to conclude the algorithm. As indicated

in Table 6.1, 100 generations must occur without finding a new best overall solution

before the GA will stop and return the best layout. Because the search space is infinite

and stochastic, the GA repeats several times for each scenario and we are presenting the

overall best of the resultant layouts.

For this work, we focus on 18 di↵erent wave scenarios. A water depth of 1.36 meters

and wave height of 0.136 meters is consistent across these cases while the wave period,

valve angle, and wave type (regular or irregular) are varied. The selected water depth is

the max depth capable in the tank and the selected wave height was chosen because it

was used by Bosma et al. in [2] to generate damping values based on sea state and valve

angle. For all cases, the damping values come from tank testing this OWC prototype in
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regular waves with the significant wave height and periods shown in Fig. 6.3. The WECs

are required to be at least 3 times their diameter away from neighboring converters, this

distance is measured from center–to–center, to mimic real sea constraints. Table 6.2

shows the considered scenarios and the water density is 1000 kg/m3. The valve angles and

associate damping values shown in the table were chosen based on information presented

in Bosma et al. [2]. We are specifically looking to observe the potential impact of three

variables — wave period, wave type (regular versus irregular), and damping (valve angle).

Table 6.2: Wave scenarios
Regular Wave Cases

Valve Angle Wave Height [m] Period [s] Damping [N/(m/s)]

80� 107.1

44� 0.136 1.22 363.9

0� 3316.2

44� 1.57 640.6

44� 0.136 1.91 774.7

44� 2.26 891.0

44� 2.61 892.4

80� 293.0

44� 0.136 3.31 775.2

0� 10032.5

Irregular Wave Cases

Valve Angle Significant Wave Height [m] Peak Period [s] Damping [N/(m/s)]

80� 107.1

44� 0.136 1.22 363.9

0� 3316.2

44� 0.136 1.91 774.7

44� 2.61 892.4

80� 293.0

44� 0.136 3.31 775.2

0� 10032.5
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6.7 Results

For all cases, waves are unidirectional. The physical space is tunable within the real–

coded GA so each scenario is run through several di↵erent sized spaces to ensure that

the defined physical space does not become a constraint. The dimensions of the axes in

the resulting layouts (shown in Fig. 6.4– 6.9) indicate the dimensions at which the best

layout is found. The colorscale in these figures shows the disturbance coe�cient which

is the change in signifiant wave height, due to the presence of an array, when compared

to the incident significant wave height.

6.7.1 Fixed Valve Angle - 44�

We first generate optimal layouts while considering a consistent valve angle of 44�. Six

cases of regular waves and four cases of irregular waves are run. These cases are shown

in Table 6.2. With the valve angle constant, the damping fluctuates between each run

as a result of a changing wave period.

6.7.1.1 Regular Waves

The wave periods, T , for the regular wave cases range from 1.22s to 3.31s with a con-

sistent wave height of 0.136 meters. Each scenario is run multiple times and the layouts

found yielding the best interaction factors are shown in Fig. 6.4.
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(a) T=1.22s, q=2.5790 (b) T=1.57s, q=1.4387 (c) T=1.91s, q=1.1946

(d) T=2.26s, q=1.1027 (e) T=3.31s, q=1.0257

(f) T=2.61s, q=1.0568

Figure 6.4: Optimal layouts with regular waves, a valve angle of 44� and H=0.136m
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Observing the layouts obtained with regular waves, we note that in all scenarios the

GA is able to generate a configuration with an interaction factor greater than one.

These interaction factors greatly depend on the incident wave period and behave much

better with the shorter wave periods tested. For a period of 1.22s a layout is found that

yields an interaction factor of 2.579 (Fig. 6.4(a)). For the longest tested period, 3.31s, an

interaction factor of 1.0257 (Fig. 6.4(e)) is obtained. This behavior is expected since a

shorter period means that the converter will undergo more oscillations in a set amount of

time when compared to longer periods. The results from the shorter periods (Figs. 6.4(a)

& 6.4(b)) indicate WECs taking advantage of individual neighbor’s di↵racted waves.

The increased periods (Figs. 6.4(c), 6.4(d) & 6.4(f)) show WECs acting in groups that

place themselves in semi-parallel lines perpendicular to the incident waves. Figure 6.4(e)

shows WECs pairing up and benefiting from another paired converter’s di↵racted waves.

6.7.1.2 Irregular Waves

We next obtained layouts for irregular wave conditions with a valve angle of 44�. The

experienced sea states come from a Bretschneider spectrum and have a significant wave

height of 0.136 meters. We considered two di↵erent wave periods, Tp, and the results

are shown in Fig. 6.5.

As with the layouts obtained using regular waves, the layouts obtained with the 44�

valve angle in irregular waves obtain interaction factors consistently greater than one

and follow a similar trend to the regular waves. The shorter period in Fig. 6.5(a) shows

WECs acting individually and the rest show WECs acting in groups. The longer wa-

ver periods (shown in Figs. 6.5(c) & 6.5(d)) indicate the converters grouping and then
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(a) Tp=1.22s, q=1.6745 (b) Tp=1.91s, q=1.1406

(c) Tp=2.61s, q=1.0646 (d) Tp=3.31s, q=1.0392

Figure 6.5: Optimal layouts with irregular waves, a valve angle of 44�, and Hmo=0.136m
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creating space between the groups. This is likely in order to allow the di↵racted waves

of the first group to begin filling in before reaching the second group. The increase in

interaction factor from these scenarios is likely due to the subgroups of converters more

so than the entire group of WECs.

We also note that while the overall trend is similar to that of the regular waves for the

same valve angle, the range of observed interaction factors is less extreme. Also, the

interaction factors of the longer irregular periods are greater than those from regular

waves, but less for the shorter periods.

6.7.2 Varied Valve Angles

To further understand how WEC control might a↵ect the power production we exam-

ine two di↵erent simulated valve angles in both regular and irregular wave conditions

(experienced through changes in the damping value). The damping values come from

regular wave tests of an OWC in the wave tank and are listed in Table 6.2. They range

from 107.1 N/(m/s) with the shortest wave period and 80� to 100032.5 N/(m/s) with

the longest wave period and 0�. We select the damping values from the extreme valve

positions to gain understanding into the e↵ect on power over the full range of valve an-

gles. We can compare these results with the damping values from the valve angle of 44�

that is between these extremes. As with the 44� results, the irregular sea states come

from a Bretschneider spectrum which is chosen for consistency with our previous work

[11, 40].
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6.7.2.1 Regular Waves

Having already shown the results found for a 44� valve angle, Fig. 6.6 shows the best

layouts obtained when optimizing the array with a valve angle almost completely open

at 80�. Based on the data from a tank test of a single OWC, a fixed valve angle will cause

damping changes dependent on the incident wave. The 80� scenarios simulate converters

allowing close to the maximum amount of air flow in and out of the interior chamber of

the OWC.

(a) T=1.22s, q=2.8095 (b) T=3.31s, q=1.0243

Figure 6.6: Optimal layouts with regular waves, a valve angle of 80� and H=0.136m

The next valve angle we consider with regular waves is 0� — to mimic when the valve is

completely shut. Though an OWC would be unable to generate power without air flow,

we use this scenario to compare what interaction could be obtained with the maximum

damping created by this valve position. The resulting layouts and corresponding inter-

action factors are displayed in Fig. 6.7.
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(a) T=1.22s, q=2.5561 (b) T=3.31s, q=1.0645

Figure 6.7: Optimal layouts with regular waves, a valve angle of 0�, and H=0.136m

For regular waves, the 80� scenarios follow a configuration trend similar to the previous

results seen in the layouts generated for the shorter and longer wave periods. Shorter

periods yield individual behavior and longer periods yield grouping behavior. However,

the result in Fig. 6.7(b) for the 0� scenario has a layout that is di�cult to determine if

the WECs are acting individually or are grouped. We also observe that with the 1.22s

period the greatest interaction factor occurs at 80� and the lowest interaction factor at

0�. Alternatively, the inverse is true for the period of 3.31s.

6.7.2.2 Irregular Waves

We now look at the behavior observed for di↵erent valve positions under irregular wave

conditions. The same valve positions are evaluated as in the regular wave scenarios and

a Bretschneider spectrum is used. (The scenarios are shown in Table 6.2.) Based on
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the results of the fixed valve angle we expect to see tendencies similar to those from the

regular wave scenarios.

The best layouts found when the valve is almost completely open are shown in Fig. 6.8.

The resulting layouts again show WECs taking individual advantage of neighboring con-

verters for the shorter period and separating into two distinct groups for the longer

period.

(a) Tp=1.22s, q=1.4559 (b) Tp=3.31s, q=1.0465

Figure 6.8: Optimal layouts with irregular waves, a valve angle of 80� and Hmo=0.136m

The last valve angle we consider with irregular waves is 0�. The layouts determined are

shown in Fig. 6.9 and are similar to the regular wave results with the same valve angle.

In this case, results from both periods seem to indicate converters acting individually.

Considering the interaction factors for the scenarios with 1.22s periods and irregular

waves, the highest interaction factor is found at 0� and the lowest interaction factor is at

80�. This is an inverse pattern to what is seen from the regular wave results; however, the
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(a) Tp=1.22s, q=1.7597 (b) Tp=3.31s, q=1.0723

Figure 6.9: Optimal layouts with irregular waves, a valve angle of 0� and Hmo=0.136m

interaction factors’ trend for scenarios with 3.31s periods and irregular waves is unique

with the highest interaction factor found at 0� and the lowest interaction factor at 44�.

These trends point to the importance of matching a damping value to the sea state being

experienced. One valve angle does not work best for all sea states. Rather, the optimal

valve angle will depend on what damping is needed which is dependent on the sea state.

6.8 Discussion

From the 18 di↵erent scenarios detailed previously, we gain understanding into the po-

tential for including active WEC control in a WEC array optimization method. The

results from the runs are compiled in Table 6.3. The number of generations refers to

how many cycles the real-coded GA went through before converging. We note behaviors

dependent on wave period, wave type (regular or irregular), and valve angle (damping).
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Table 6.3: Interaction factors from di↵erent wave scenarios
Regular Waves (Hs = 0.136m)

Valve Angle Period [s] Interaction Factor # of Generations

80� 2.8095 561

44� 1.22 2.5790 318

0� 2.5561 463

44� 1.57 1.4387 634

44� 1.91 1.1946 192

44� 2.26 1.1027 278

44� 2.61 1.0554 475

80� 1.0243 260

44� 3.31 1.0257 257

0� 1.0645 485

Irregular Waves (Hs = 0.136m)

Valve Angle Peak Period [s] Interaction Factor # of Generations

80� 1.4559 306

44� 1.22 1.6745 316

0� 1.7597 483

44� 1.91 1.1406 445

44� 2.61 1.0646 520

80� 1.0465 208

44� 3.31 1.0392 500

0� 1.0723 453
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6.8.1 Wave Period

Both regular and irregular wave conditions indicate a relationship of the interaction

factor with the wave period. For our model’s geometry and dimensions, the shorter

periods are found to yield higher interaction factors and the longer periods lower in-

teraction factors. However, all periods we tested resulted in power production greater

than what would be obtained by five WECs acting in isolation. With a valve angle of

44� and regular waves, a period of 3.31s results in an increase in power of 2.57% and

a period of 1.22s results in a 158% power increase. Similarly the same valve angle but

with irregular waves results in power increases of 3.69% and 67.5% respectively. For the

WEC we have chosen, and its dimensions, the shorter periods yield better interaction

results. This is best observed in the interaction factors from the 44� results for both reg-

ular and irregular waves; however, the trend can also be seen for the 0� and 80� scenarios.

The behavior of the interaction factor resulting from an experienced wave period re-

inforces the need to consider WEC design based on expected sea state as well as the

importance of introducing WEC control. With the observed variation in interaction fac-

tors across the periods, it is important to consider, during the initial design process, the

environment in which converters will be deployed. Additionally, these results indicate

the ability of our optimization framework to determine layouts which can provide great

improvements over the summed power of isolated WECs.
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6.8.2 Wave Type (Regular and Irregular Behavior)

Considering a 1.22s wave period with corresponding valve angles of 80�, 44� and 0�, the

regular wave scenarios perform much better than the irregular wave scenarios; however,

for the same valve angles and a 3.31s wave period, the regular wave scenarios perform

slightly worse. This could be that for short-period, regular waves, the algorithm posi-

tions converters to best take advantage of neighboring converters’ di↵racted waves due to

the wave period consistency. As we noted previously, the WECs do not perform as well

with longer periods and therefore the interaction factors are lower for both regular and

irregular waves. Consequently, the WECs are not able to capitalize well on neighboring

converters’ di↵racted waves.

While some waves in an irregular wave climate will not have the energy e�ciently cap-

tured by up–wave WECs, there is still the possibility of developing a slightly enhanced

wave condition behind those front WECs. Comparatively, the wave consistency in reg-

ular wave conditions likely aids in improving the energy capture e�ciency. The overall

best power improvement of 181% occurs when the valve angle is 80� with short period

regular waves. While the ocean does not contain regular waves, the introduction of WEC

control could e↵ectively reap similar power increases as the PTO responds to each wave

individually. Alternatively, the smallest amount of power improvement is 2.43% and is

also found with a valve angle of 80� and in regular waves, but with a long wave period.

Once again, the consistent interaction factors that are greater than one show the ca-

pability of the array optimization framework and the necessity of utilizing optimization

methods for maximizing power by incorporating the experienced sea states and WEC

interactions.
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6.8.3 Valve Angle (Damping)

While the optimal layouts and corresponding interaction factors are dependent on the

incident wave’s period, there is also an observed dependency on the damping associated

with the input valve angle (Table 6.2). Keeping a fixed wave period, we examine the

interaction factors obtained by scenarios with valve angles of 80�, 44� and 0�. This is

done for our evaluated wave period’s upper and lower limits of 1.22s and 3.31s. For

the former period, the interaction factor increases with a decreased valve angle. For the

period of 1.22s, an interaction factor is found yielding a power increase of 45.4% when

the valve angle is 80�. This increases to 67.5% and 76.0% for valve angles of 44� and 0�

respectively. It is important to note that generating power with a valve angle of 0� is

not physically possible for our OWC since no airflow would be possible. However, since

we modeled our OWC as a heaving point absorber, scenarios where the 0� performs best

indicate the desire of the model to utilize the damping associated with that valve angle.

When the period is 3.31s, somewhat similar behavior is found with valve angles of 80�

and 0�; however, the value found for 44� is slightly less than that of the 0�. This di↵er-

ence is potentially due to a GA not guaranteeing global optimality and also because of

lacking converter e�ciency at the period of 3.31s.

To further evaluate the sensitivity of the power output when considering array optimiza-

tion and variable damping values (based on valve angle and wave period), we determined

optimal layouts for 42 more irregular sea states with wave height, Hs = 0.136m, and wave

periods, Tp = 1.22s, 1.57, 1.91s, 2.26s, 2.61s, and 3.31s. The additional values are in

between the extreme periods utilized for the 18 results shown earlier. For each wave

period, we consider the damping values associated with 10 di↵erent valve angles ranging
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from 0� to 80� and record the maximum interaction factor. These damping values are

acquired from Bosma et al. [2]

Figure 6.10: Interaction factor sensitivity based on valve angle and wave period

Observing Fig. 6.10 we see that the largest improvement in interaction factor is primarily

dependent on the experienced wave conditions and then on the valve angle (damping).

This reiterates the importance of including and considering both layout optimization and

WEC control in array design. This figure also indicates the need to consider the sea state

a WEC will experience when designing the physical WEC itself. Since converters will

likely be placed in locations which have variability in the sea states to be experienced, it

will be necessary to incorporate active WEC control to take advantage of each individual

wave. And for layout optimization, there is a need to consider real sea states within the

optimization process. Research has primarily considered a unidirectional and irregular

(but constant) wave state. Consequently, research forward should include probabilistic
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sea states based on real conditions. In Chapter 8, we will introduce probabilistic wave

conditions from buoy data.

6.9 Conclusion

To ensure that WECs operate as e�ciently as possible, two methods have been pro-

moted as future means of increasing the power development of grid connected WEC

arrays. These are the creation of automated schemes for array optimization and the

development of advanced WEC controls. To date, we have acquired optimized configu-

rations for five OWCs based on a validated BEM model of our WEC (see Fig. 6.3) and

have determined how the results di↵er based on varied wave type (regular and irregular),

incident wave period, and valve angle (damping).

We observe that — while always greater than one — the interaction factor varies greatly

depending on the incident wave period and, in our case, increases with shorter periods.

Considering irregular waves, the lowest found power improvement is 3.92% (valve angle

of 80� and period of 3.31s) and the largest found power improvement is 76.0% (valve

angle of 0� and period of 1.22s). As mentioned previously, the 0� valve angle is not

realistic for an OWC, but points to the damping that the model would like to utilize.

The valve angle’s connection with the interaction factor is less clear, but does indicate

the ability to obtain greater power based on the position of the valve and its consequence

damping. This information reveals the importance of concurrently implementing control

in array optimization methods.



94

While the interaction factor is shown to be influenced more by the incident period than

the damping, both are necessary for achieving maximum power. We also show that

maximizing power requires considering converter design given expected wave conditions.

Thus far, the results of this project have provided useful information for better under-

standing what influences power development of a WEC array and prepares for future

integration of active WEC control with array optimization. Continuing forward, we will

be optimizing layouts such that optimal damping is determined for individual WECs

within an array.
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Chapter 7: Array Design and WEC Damping Assignment of Fixed

Oscillating Water Columns

As a component of the DOE’s Advanced Laboratory and Field Arrays (ALFA) project,

discussed in Chapter 6, we are performing an initial study regarding how to best jointly

consider array optimization and active WEC control. Both array optimization and ac-

tive WEC control have theoretically shown substantial power increases [42, 40, 41, 26].

What has yet to be seen is the power that can be developed when WEC control and

array optimization are combined.

We propose that a valuable first consideration is to consider this initial study in several

stages — specifically considering di↵erent combinations of fixed and optimized array

designs with fixed and optimized WEC damping values. Only seen preliminary in the

literature [21], this research lays further groundwork for future integration of active con-

trol scenarios into an array optimization scheme.

To best understand the impact of array optimization with optimal, WEC–specific damp-

ing, we consider three case studies. These include fixed layouts with a fixed array damp-

ing (Case 1), fixed layouts with optimized WEC–specific damping (Case 2), and opti-

mized layouts with a fixed array damping (Case 3). We opted not to consider optimized

layouts with optimized WEC–specific damping due to minuscule improvements in power

and computational expense. For the cases with fixed layouts, the layouts are informed
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by existing research. For the cases with fixed damping, these values are obtained by de-

termining the optimal damping value of a single converter in isolation. Figure 7.1 shows

the relationship between these case studies. In this chapter we will describe our WEC

damping value optimization method and the results we have obtained for the di↵erent

cases.

Figure 7.1: Overview of cases being considered.

7.1 Methodology

We are using the same OWCs from Chapter 6 for this study, but before the three cases

can be considered, our chosen WEC is modeled in WAMIT [45] using a model with

higher fidelity due to a broader range of input periods. Another addition to Chapter 6

is the inclusion of damping optimization based on experienced sea state.
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7.1.1 OWC Damping Assignment

After modeling our converter in WAMIT, we then determine an optimized damping value

for a single WEC. This value will be used throughout Cases 1 and 3 and as an initial

starting value for Case 2. The optimized damping values are highly dependent on the

sea state experienced by the WEC. In this work, we are considering the four sea states

shown in Table 7.1.

Table 7.1: Evaluated Sea States and Associated Single WEC Optimal Damping.

Sea State Hs [m] Tp [s] damping [kg/s]
A 0.136 1.91 174.82
B 0.136 2.26 318.93
C 0.139 2.48 428.01
D 0.242 3.30 818.46

In the mwave power development code, the damping value of the wave energy converter

is a tunable parameter. Our previous work treated this value as a constant, utilizing the

value given by Child & Venugopal [33]. In order to obtain an optimal damping value for

our WEC, we implemented a Golden Section search to determine the optimal damping

value that results in the highest power development. We observed that for a single OWC,

in a set wave field, there is one distinct maximum. The optimal values for damping are

shown in Table 7.1.

7.1.2 Array Design

Depending on the case being evaluated, the array’s layout may be either predefined

(Cases 1 & 2) or found using our problem–specific optimization scheme (Case 3).
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7.1.2.1 Predefined Layouts

To choose the predefined layouts for evaluation, we selected a set of 11 potential layouts

from existing literature [12, 66, 67]. From these 11 layouts, four were ultimately selected

for in-depth evaluation in Cases 1 and 2. These four layouts are shown in Fig. 7.2 and

were selected based on their performance and their prevalence in existing research. The

separation distance scaling factor is denoted by n and Dia is the diameter of the OWCs

(0.62 meters). This separation distance is measured from center to center of the WECs.

All the OWCs in Fig. 7.2 are the same size, but may look di↵erent based on the axes

scale.

7.1.2.2 Optimized Layouts

To find the optimal layouts for Case 3, we utilized the problem–specific GA we have

developed and discussed in Chapter 4 and 6 [40, 41]. The methodology for Case 3 is

presented in depth in Sharp et al. [41]. The GA explores many di↵erent potential layouts

of OWCs in the space as well as exploiting potential solutions in order to converge on a

layout that optimizes the developed power. This algorithm has been developed further

to include WEC-specific damping optimization within the objective evaluation; however

the small improvement in power and interaction factor was not worth the computation

time needed — primarily because of the need to generate results promptly for tank

testing.
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Figure 7.2: Predetermined Layouts for Cases 1/2

7.2 Results

In this section, we show the results we have obtained thus far from our work investigating

the three cases. As with Chapter 7, we are not concerned with the cost in this work since

the number of WECs is static and because our OWC is only intended for tank testing

(without intention of being scaled up for use in the ocean). That said, the results will

provide useful information for future ocean deployment by developers.
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7.2.1 Case 1: Fixed Layouts with Fixed Damping

In Case 1, the four fixed layouts from Fig. 7.2 are evaluated with one fixed damping value

for all OWCs (shown in Table 7.1). Examining Table 7.2, we see that the converter

exhibits the most power development with the more extreme sea state, sea state D.

However, while this sea state might exhibit the most power also has the potential to

overwhelm the WEC due to the increased signifiant wave height. We also observe that

Layout 1 (vertical line orthogonal to the incident wave) performs the best across all the

sea states. Given that we did not evaluate every possible layout of our five OWCs, we

cannot be very confident that this is the best layout.

7.2.2 Case 2: Fixed Layouts with Optimized Damping

Case 2 uses the same predetermined layouts as Case 1; however, instead of a single damp-

ing value used for all WECs, optimized damping values are found for each individual

WEC. To determine these values, a Golden Section search is again used. For the search,

the damping values from Table 7.1 are used as initial values and the search intervals

used when determining these initial values are used as initial search intervals for the

WEC–specific search.

The optimal damping for each OWC is sought so that all the damping values except

for one are fixed. Searching iteratively through all the OWCs in the array, the WEC–

specific optimums are selected when the overall objective function no longer changes.

To ensure that the global optimal damping values are found, the OWCs are iteratively

searched through in a random order to ensure that the global optimal is found. Table 7.3
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Table 7.2: Case 1 Results

Layout 1 (from Fig. 7.2)

Sea State A B C D
Power [W] 14.114 13.913 14.310 40.339
q-factor 1.1030 1.0643 1.0505 1.0231

Layout 2 (from Fig. 7.2)

Sea State A B C D
Power [W] 13.053 13.640 14.184 39.682
q-factor 1.0200 1.0434 1.0413 1.0065

Layout 3 (from Fig. 7.2)

Sea State A B C D
Power [W] 12.804 13.526 14.122 39.697
q-factor 1.0006 1.0347 1.0368 1.0069

Layout 4 (from Fig. 7.2)

Sea State A B C D
Power [W] 12.505 13.125 13.778 39.691
q-factor 0.9773 1.0039 1.0115 1.0067
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shows the WEC specific damping for each fixed layout in each sea state. As expected,

the damping values are symmetrical about the incident wave direction. Also, the higher

damping values are associated with the WECs that will be experiencing higher significant

wave heights from neighboring WECs. Since the increase in power was small, the overall

trends are the same as in Case 1.

7.2.3 Case 3: Optimized Layouts with Fixed Damping

This case is similar, and based on, Chapter 6 [41]. Utilizing a fixed damping value for

all the WECs within the array, this informed value is dependent on a single WEC’s

behavior in a given sea state and is shown in Table 7.1. Each sea state yields a unique

layout and power output as shown in Fig. 7.3. These layouts, while similar in appearance

to Layout 1 of the fixed layouts, these optimal configurations do di↵er slightly in the

spacing between WECs. The layout for sea state D di↵ers drastically from the other

three showing the influence of sea state on optimal layout configuration. The power and

interaction factors associated with each of these layouts can be found in Table 7.5.



103

Table 7.3: Case 2 WEC Damping

Layout 1 (from Fig. 7.2)
Sea State WECs

1 2 3 4 5
A 167.26 153.87 170.50 153.87 167.26
B 317.20 308.93 327.56 308.93 317.20
C 429.31 426.86 443.11 426.86 429.31
D 828.96 829.18 833.72 829.18 828.96

Layout 2 (from Fig. 7.2)
Sea State WECs

1 2 3 4 5
A 225.68 225.68 167.83 259.21 167.83
B 326.62 326.62 346.77 423.12 346.77
C 402.18 402.18 469.81 529.88 469.81
D 720.92 720.92 872.12 989.33 872.12

Layout 3 (from Fig. 7.2)
Sea State WECs

1 2 3 4 5
A 220.43 200.07 220.43 215.90 215.90
B 354.11 292.97 354.11 401.60 401.60
C 441.76 369.23 441.76 522.55 522.55
D 775.30 706.24 775.30 913.93 913.93

Layout 4 (from Fig. 7.2)
Sea State WECs

1 2 3 4 5
A 186.33 209.50 209.50 195.54 195.54
B 297.99 363.98 363.98 357.13 357.13
C 393.69 465.50 465.50 474.48 474.48
D 747.24 822.43 822.43 880.06 880.06
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Table 7.4: Case 2 Results

Layout 1 (from Fig. 7.2)

Sea State A B C D
Power [W] 14.129 13.915 14.310 40.3410
q-factor 1.1042 1.0644 1.0506 1.0232

Layout 2 (from Fig. 7.2)

Sea State A B C D
Power [W] 13.181 13.686 14.225 39.797
q-factor 1.0300 1.0469 1.0443 1.0094

Layout 3 (from Fig. 7.2)

Sea State A B C D
Power [W] 12.895 13.529 14.183 39.814
q-factor 1.0078 1.0397 1.0412 1.0098

Layout 4 (from Fig. 7.2)

Sea State A B C D
Power [W] 12.546 13.157 13.803 39.736
q-factor 0.9805 1.0064 1.0133 1.0079
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Figure 7.3: Optimized Layouts for Case 3

Table 7.5: Case 3 Results

Sea State A B C D
Layout 5 6 7 8
Power [W] 14.113 13.917 14.316 40.7570
q-factor 1.1029 1.0646 1.0510 1.0338

7.3 Observations

We made several observations from these results - primarily how the interaction factors,

damping values and layout designs are e↵ected across the di↵erent cases.

7.3.1 Interaction Factor

We observe that, when comparing across sea states, an increase in power does not nec-

essarily correspond to an increase in interaction factor. For instance, the greatest power

was achieved from sea state D, but this sea state always yielded the lowest interaction
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factors. The ability to achieve larger interaction factors in sea states which may be less

conducive to power development is an indicator of the importance of layout optimization.

Meaning that even if a layout experiences a sea state for which the individual converters

are not well–designed, a layout can be found with can yield relative increases in power.

7.3.2 Damping

We also note that generating WEC specific damping values does produce improvements

in power development and interaction factor. This is shown when examining Cases 1

and 2 (Tables 7.2 and 7.4). However, the improvements are relatively minor. These

changes are likely small because the values are tuned to a sea state and a layout and do

not consider the individual waves that are experienced. This indicates a further need to

include active control scenarios in future array optimization development. The results

in Table 7.3 do show that converters do perform better with individual damping. These

damping values are based on an entire sea state, but if they were able to be tuned

individual to real–time waves the power improvements would likely be substantial – thus

indicating a need for future implementation of active WEC control.

7.3.3 Layout Design

Lastly, when we compare the behavior of predetermined layouts with optimized layouts,

we see that incorporating layout optimization yields better power production across all

the considered sea states (Table 7.5). Furthermore, the power produced across the sea

states are more consistent (seen in Case 3) when the layouts are optimized than when

they are fixed (Cases 1 and 2).
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7.4 Conclusions

The goal of this work is to better understand the connection between layout design and

WEC damping adjustment. Eventually, layout optimization methods should include

active control in order to provide better informed layout options. To explore the poten-

tial influence of active control in array optimization, we have examined three distinct

cases that include fixed/optimized layouts and fixed/optimized WEC–specific damping.

These results provide a strong foundation from which to further explore active control

in conjunction with layout optimization.
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Chapter 8: WEC Arrays for Blackout Risk Mitigation:

Influence of WEC Size and Location

8.1 Introduction

This chapter is being written in partial fulfillment of the National Science Foundation

Research Traineeship (NRT) program at Oregon State University. As a part of the NRT

program, I worked with a transdisciplinary group investigating the potential of wave

energy being utilized in emergency blackout scenarios.

Energy security is an important yet often overlooked vulnerability to coastal communi-

ties. Electricity availability is necessary for the functioning of our current society and

coastal towns in Oregon have a unique vulnerability due to limited transmission lines

connecting the coast with primary power sources on the East side of the Coastal Range.

If enough lines fail, as occurred during a major winter storm in 2007, the coast would

be electrically stranded from the primary electrical grid. Consequently, there is devel-

opment potential for renewable power generation that takes advantage of the ocean’s

energy in times of emergency.

As part of a multi–disciplinary team of graduate researchers, we assessed key technical,

natural system, socio–economic, and regulatory considerations surrounding the validity

and value of wave energy as an emergency power source for the example community of
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Newport, Oregon. The team was comprised of two Mechanical Engineering students,

one Electrical Engineering student, and one student in Marine Resource Management.

This project involved considering coupled natural human systems, quantification and

communication of risk a uncertainty and big data. Our project focused heavily on the

first two areas mentioned, but did include some inclusion of big data.

In addition to our trandisciplinary research [68], we also conducted individual research

tangential to the topic. As my work is in the realm of WEC array design, I investigated

how power production (Eq. 2.1) and interaction factor (Eq. 1.1) would be a↵ected by

variations in sea state andWEC size. This chapter will begin the process of characterizing

the array design solution space in an e↵ort to better understand what is most important

to account for in wave energy implementation.

8.2 Motivation

We determined that wave energy may be a valid emergency generation alternative from

a technical and regulatory standpoint. Based on our findings, it appears that tempo-

rary WEC systems would be economically infeasible given the estimated power demand

of critical services and the generation capabilities of current converters. However, our

research shows that there are significant gaps in knowledge regarding how we value crit-

ical services in a long emergency, and advancements in this field may change the value

proposition of an emergency WEC use case. Additionally, advancements in wave energy

technology or emergency power demand management may reduce the total size require-

ments for an emergency WEC array, or the logistical ability to deploy the WEC system,

changing the feasibility and cost of the system in the future. Moreover, there is addi-
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tional uncertainty regarding the recurrence interval of an outage of su�cient scale to

warrant investment.

Several such gaps in knowledge include: how to e�ciently extract power from ocean

waves, what should be prioritized when designing an array, and possible use–cases for

WECs. For example, the creation of microgrid–capable, wave energy ”resilience zones”

could potentially improve coastal energy infrastructure for use as a nominal energy

provider under normal circumstances and as a primary energy supply for emergency

situations. However, since the sea state will vary depending on location and the indus-

try has yet to converge on a common geometry, this potential scenario requires further

investigation. With limited understanding of the nuances that influence array design,

it is necessary to determine what most a↵ects the behavior of a WEC array. From our

previous work, we have observed that facets which may impact the power development

include WEC geometry and experienced sea state.

8.3 Problem Formation

Since the solution space for WEC array design has yet to be well characterized, we chose

to fix the number of converters in the array and focus this initial characterization study

on the experienced sea state and the WEC geometry.

8.3.1 Geometries

The geometries for all the cases is that of a truncated cylinder similar to the WEC

modeled in our previous work. Given the wide range of WEC types under development,



111

our simple structure serves as a place holder. One key di↵erence between the model

used for the work presented in this chapter and the model used in previous chapters is

that three degrees of freedom are allowed (pitch, surge, and heave). We looked at three

di↵erent versions of the truncated cylinder. These models were based on our work done

on the ALFA project (discussed in Chapter 7), Ocean Power Technology’s PB3 [69], and

Child and Venugopal’s research [34]. The specific dimensions can be found in Table. 8.2.

The ALFA WEC was physically an OWC, but was modeled as a heaving point absorber.

The intention of using these representative dimensions is not to represent the converters

exactly, but to have a basis for the dimensions being used for potential comparison.

Table 8.1: WEC geometry dimensions

ALFA OPT–PB3 Child & Venugopal
Diameter [m] 0.62 2.7 10

Height [m] 0.4392 14.3 10
Draft [m] 0.4392 10.8 5

8.3.2 Sea State

To understand what impact the sea state would have on an array’s configuration and

power production, we chose four locations around the United States to gather historical

wave date from in order to better note di↵erences. We also utilized wave data from

a buoy o↵ the northwest coast of Ireland for an international perspective. The names

of the buoys used to acquire data and clustered views of that data can be found in

Table 8.2. The water depth is h; the significant wave height is Hs; and the dominant

wave period is Tp. The approximate location of the buoys in the world can been seen in
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Fig. 8.1. In our previous work we had only been able to use single values for the input

sea state, but for better accuracy this algorithm was updated to utilize a probabilistic

cluster of sea conditions. To achieve these clusters, we acquired and cleaned the data for

a ten year period (2008–2017) and then applied MATLAB’s k–means clustering method

to group this data into a more manageable size. Cleaning the data meant removing

any values which indicated that the data point was corrupted. The Irish buoy only had

data from 2012 through 2018. Incorporating this new sea state input resulted in slightly

slower run times due to a small increase in objective function evaluations. The objective

function now must determine the power generated by each significant wave height and

wave period pairing in the cluster and then multiplying and summing the resulting power

results together.

Figure 8.1: Buoy Locations
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Table 8.2: Representative Sea States by Location

NOAA 46050 – Oregon NOAA 44098 – New Hampshire
(h = 140 m) (h = 76.5 m)

Hs [m] Tp [s] Probability Hs [m] Tp [s] Probability
2.09 10.15 0.33 0.94 8.22 0.21
2.20 12.91 0.17 1.55 6.05 0.25
2.60 15.31 0.10 1.14 10.61 0.18
4.46 12.19 0.11 3.71 9.71 0.05
1.71 7.24 0.27 0.99 4.33 0.25
2.71 18.14 0.03 1.20 13.55 0.06

NOAA 51202 – Hawaii NOAA 46076 – Alaska
(h = 89 m) (h = 195.1 m)

Hs [m] Tp [s] Probability Hs [m] Tp [s] Probability
1.97 10.63 0.24 1.85 8.38 0.33
1.99 13.27 0.12 2.03 10.62 0.23
2.00 18.59 0.01 1.03 13.89 0.08
8.08 15.86 0.03 4.43 11.66 0.11
1.83 7.76 0.60 1.37 6.06 0.23
1.60 22.44 0.00 1.06 16.41 0.02

Belmullet A – Ireland
(h = 100 m)

Hs [m] Tp [s] Probability
3.98 11.40 0.22
5.88 13.45 0.11
2.15 10.79 0.28
8.08 16.14 0.04
1.18 7.99 0.26
3.32 14.34 0.10
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8.4 Results

We will observe four primary things about the results - the obtained layouts across

the di↵erent sea states, the layouts across the di↵erent sizes, the generated power and

the observed interaction factors. Figure 8.2 shows the di↵erent layouts found when the

smallest converter is used. Figures 8.3 and 8.4 show the generated WEC configurations

for WECs of increasing size. As a note, none of the layouts are definitively the global

optimum. Due to computational time constraints, we were only able to run a single it-

eration of each geometry and sea state combination. So it is possible that the algorithm

only obtained a local optima. That said, there are trends across the layouts.

Looking through the resulting configurations, we note similarity in layouts when the ge-

ometry is held constant. The layouts in Fig. 8.2 from Hawaii, Alaska and Ireland are in

the form of a W with the points of the W pointing in the up–wave direction while the sea

states of Oregon and New Hampshire resulted in layouts that tended more towards two

groupings of WECs. Figure 8.3 shows definite o↵–camber lines that appear throughout

all of the configurations. Within that similarity though, there is unique spacing depend-

ing on the sea state. Figure 8.3(e) appears to have been potentially space constrained

based on the position of the fifth WEC in the bottom right. The results for the 10–meter

WEC shows groupings of the WECs across all the sea states except for that of Fig. 8.4(e).

(This specific result may have converged too quickly to a less optimal solution – more

evaluations would need to be run to observe if similar arrangements are seen consistently.)
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(a) NOAA 46050, OR (b) NOAA 44098, NH (c) NOAA 51202, HI

(d) NOAA 46076, AK (e) Belmullet A

Figure 8.2: Optimal layouts for OWCs from ALFA Project (Dia = 0.62m)
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(a) NOAA 46050, OR, USA (b) NOAA 44098, NH, USA (c) NOAA 51202, HI, USA

(d) NOAA 46076, AK, USA (e) Belmullet A

Figure 8.3: Optimal layouts for OPT WEC (Dia = 2.7m)
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(a) NOAA 46050, OR (b) NOAA 44098, NH (c) NOAA 51202, HI

(d) NOAA 46076, AK (e) Belmullet A

Figure 8.4: Optimal layouts for WEC from Child and Venugopal’s research (Dia = 10m)
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In addition to visually inspecting the layouts we can also examine the amount of power

created by each layout and the associated interaction factors. Figure 8.5(a) shows the

power generated in watts based on each location and geometry (note the legend) and

Fig. 8.5(b) shows the same comparison, but with the interaction factor instead of the

power.

(a) Power

(b) Interaction factor, q

Figure 8.5: Comparing the WEC geometry against location specific sea states
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8.5 Discussion

Examining the layouts across the converter geometries we note that the overarching lay-

outs are dependent on the geometry, and that in general the layouts take advantage of

di↵racted waves generated by neighboring WECs or groups of WECs. Specific exam-

ples of WECs being placed in the parabolic wake of up–wave converters can be seen in

Fig. 8.2(c) for single converters and Fig. 8.4(a) for grouped converters. The o↵-camber

results of Fig. 8.3 demonstrate the converters being placed to take advantage of the cas-

cading, di↵racted waves generated by up–wave WECs.

Additionally, power increases are seen as our WECs increase in size. This is likely due to

the energy in the experienced sea states and may seem to suggest that larger converters

should be predominately considered. However, that would not account for the desired

use of WECs or WEC economics. Examining Fig. 8.5(a), we see that the most power is

generated in Oregon and Ireland (shown most clearly for the 10–meter WEC). As these

locations are the most energetic - experiencing larger significant wave heights and longer

dominant periods — relatively larger WECs could make more sense, especially if the

intention was to generate power for the grid. In this work we considered three geome-

tries as a preliminary investigation and future work should further study the impact of

converter diameter, draft and height to find what geometry is best suitable for a specific

location.

Another consideration is that a WEC should potentially not be designed for the most

energetic sea states if those sea states will dramatically shorten the life span of the WEC

(even if those conditions are most prevalent). Alternatively, if the intention is for the
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WECs to provide power for only a short amount of time and maximization of power

generation is most important, then the converters would be designed di↵erently.

Considering the economics of the system, there is also the need to vary the number

of WECs being considered. In this work we considered five WECs as as been utilized

previously in literature. Once available cost models become more accurate the economic

trade o↵ between more smaller converters generating a comparable amount of power

to fewer larger converters should be considered. If smaller converters are utilized there

could be less of an impact if a WEC were to malfunction or need maintenance; however,

if a larger WEC that was part of a smaller array experienced the same malfunction,

the loss of power would have a much greater impact. Additionally, smaller WECs could

allow for the size of an array to fluctuate depending on locationally dependent energy

needs and would make deployment and extraction of converters much less expensive.

Specifically examining the o↵–camber layouts in Fig. 8.3, we notice a similar overarch-

ing design, with di↵erent spacings between the WECs. This could indicate the need to

consider adjustable mooring within an array to account for variable sea conditions by

adjusting device spacing. Additionally, adjustable mooring could account for locations,

such as Oregon, which have multiple dominant directions. Our work shows the initial

potential of an array to maximize WEC array power given a variable sea state and fu-

ture work will continue to realistically vary that sea state through incorporating wave

directionality.

The final note we saw when examining the data is that the interaction factor improve-

ment was relative to a converter’s ability to generate power in the sea state. Locations
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where converters performed better saw smaller improvements in the interaction factor

and locations where the converters performed more poorly saw greater increases in the

interaction factor. This is promising for array optimization and for the potential utiliza-

tion of more smaller devices in an array because WECs will not always be experiencing

their most optimal sea conditions and developer can now prepare for that through array

design.

8.6 Conclusion

In conclusion, this preliminary characterization study points to the need to further de-

velop and investigate the many factors that will influence the power generation and cost

of a layout. WECs have the potential to be used to generate power on a large scale

to the national grid or on smaller scales to communities removed from primary power

sources. The results presented here provide an initial understanding of the impact that

location and device geometry might have on power development and discuss the other

factors that should be considered in conjunction.

For the specific potential of wave energy to be used for coastal communities in the

occurrence of a blackout, there are many stakeholders who would need to be included

and questions that would need to be answered. Stakeholders would include residents,

tourists, associate industries (such as electric utilities or insurance agencies), ocean users,

scientists, and elected o�cials. Each of these groups would provide useful knowledge to

aid in determining the feasibility of utilizing WECs as emergency power generators from

when a device could be deployed after a storm to what regulatory processes would need

to be completed.
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Additionally, the economics would need to be fully considered as most of these communi-

ties currently have backup diesel generators. Deployment of WECs would be much more

appealing in the occurrence of a blackout where fuel supplies run low and can not be

replenished. Alternatively, if devices are already in place providing nominal power, then

their economic viability in the event of a blackout would increase greatly. Resiliency

zones could be created, in areas subject to blackouts, that have WECs in place or have

the cables in place ready for connection. An example is the Pacific Marine Energy Cen-

ter’s test facility being constructed o↵ the coast of Newport, Oregon. If this area were to

experience a blackout, the existing infrastructure could potentially be used to generate

power for emergency services.

Given the observed relationship between power generation and interaction factor, further

investigation is required to better understand the trade o↵ of deploying a single device

or an array of smaller devices to meet an energy need. While at this point the feasibility

of wave energy as an emergency power source is not definitively known, our work lays

the groundwork for better understanding the questions involved specifically regarding

location and geometry.
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Part III

Concluding Discussion
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Chapter 9: Conclusion

As the industry moves closer to widespread ocean deployment of WECs, we have been

considering the deployment of multiple WECs acting together in array scenarios. As has

been observed with the research and implementation of wind farms [47], the configuration

of individual converters in relation to each other influences the power production and the

economics of a WEC array. Over the course of the work presented in this dissertation, we

have been intentional about progressing our optimization algorithm towards becoming a

useful tool that will minimize cost, increase power, and increase confidence through better

incorporation of influencing factors such as spacing, damping, location, and geometry.

DeployingWECs in the ocean to generate usable power over an economic lifespan requires

the consideration of many aspects by the industry.

9.1 Contributions of the Work

• Focused attention on optimization algorithm development for WEC array design.

• Showed that a binary GA performs better than an EA or SA algorithm as the

complexity of the solution space increases.

• Created a real–coded GA that improved the power production when compared to

the binary GA.

• Demonstrated the importance of layout configuration for power improvement.
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• Indicated the potential value of considering both active WEC control and array

optimization.

• Integrated WEC specific damping optimization within the array optimization al-

gorithm.

• Noted that designing a WEC for a sea state influences the power more than passive

damping control.

• Showed that the experienced sea state a↵ects the resulting layout.

• Incorporated probabilistic sea states into the optimization algorithm in order to

better utilize buoy data as an input.

With the current state of the wave industry and an initial limited focus on array design

and development, we have been methodical in our approach to WEC array optimization.

We have found that array layout design either increases or decreases power production,

that experienced sea state changes the design, and that device geometry has a major

influence on power production. Given that all our studies consider unidirectional waves,

it is doubtful that similar arrays will be utilized in ocean deployment or even that similar

interaction factors will be attained (without the incorporation of active WEC control),

but the increased knowledge of the system we have gained will provide better context for

future research that should include multi-directional waves and realtime sea states. Even

if the results shown are not realistic when compared to ocean deployment they provide

us a broader understanding regarding the behavior of WEC arrays — specifically that

devices should be designed with array behavior in mind, that spacing constraints can

drastically change an array configuration, and that location will change an array’s design.
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If we consider the Oregon ocean as an example with its two dominant directions we might

see a layout that minimizes negative interactions through wave interaction or a layout

that takes greater advantage of the direction seen in the winter due to more energetic

sea conditions. We also might see fewer larger devices with an relatively small overall

footprint or more smaller devices generating the same total power but designed to be

less expensive. Beyond power production, the economics of a WEC array will likely

drive an array’s design since the cost to lay cable, the cost to service the WECs, and

the available ocean space will probably have a greater impact on an array’s e�ciency.

However, even if not a driving influence, it is important to include all factors as part

of the design process and maximizing power production (or minimizing power losses) is

important given the the many challenges facing the survival of the industry.

9.2 Avenues for Continued Research

There are many avenues of research that could continue from this work, but the most

apparent would be the incorporation of active control into the GA’s process. Addition-

ally, greater incorporation of computation optimization techniques of a WEC’s geometry

when considering array performance should be considered. Both of these research options

would prove challenging given the complicated nature of the wave energy industry and

the number of unknowns, but are necessary for future development. As the industry ad-

vances and further models describing the space are developed, such as environmental and

social impact models, this information should also be included in the array optimization

process.
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9.3 Final Thoughts

In order to meet growing energy demands, and to utilize energy sources that are re-

newable, research and development is being conducted to determine e�cient and cost–

e↵ective methods of extracting energy from the ocean’s waves, tides, and currents. The

estimated 16,000 – 18,500 TWh of global energy in the ocean waves makes extraction of

this energy for use by the large portion of the population living near a coastline highly

promising [6, 9].

In this research, we sought to find a cost–e↵ective means of capturing the energy of ocean

waves. Developers are at the point of planning and preparing for array deployment and it

is vital that they are as well-informed as possible. Given that WECs deployed in arrays

have the capability of producing more power than the same number of WECs acting

in isolation and this ability will influence array e�ciency, an understanding of optimal

configuration is important. Research into array optimization is currently limited, and

very little has been done about the best way of determining an optimal arrangement.

In light of this, we developed a problem specific GA which generates potential optimal

WEC arrays that takes into account many influencing factors such as device geometry,

sea state, device damping, power and cost. Results from our research provide insight

regarding the challenge of WEC array optimization that can inform the wave energy

industry concerning WEC and WEC–array design as movement is made towards ocean

deployment.
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