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Energy from offshore wind could provide substantial power generation if further utilized. One 

area of significant research focus is in developing floating offshore wind devices, which would 

allow for wind energy to be gathered in deep water where driven monopile turbines are 

infeasible. However, floating offshore wind is not currently marketable, and design optimization 

is required for it to approach financial viability. A method proposed to decrease the cost is to 

connect mooring lines from multiple turbines to a single anchor. The dynamics of this system are 

complex and decrease the reliability of the components of the wind array. A proposed hypothesis 

to remedy this is to strengthen a small number of important anchors significantly more than the 

rest. A noise-resistant optimization algorithm was developed using elements of genetic 

algorithms and Bayesian optimization to identify the optimal anchors to strengthen to improve 

safety. A previously developed simulation that evaluates the reliability of a hypothetical floating 

wind array utilizing the multi-line anchor concept was used as an objective function. While the 

resultant reliability values were uncompetitive compared to slightly strengthening all anchors, 

analyzed trends showed opportunity for the concept to work if a higher number of anchors are 

overstrengthened. 
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Chapter 1: Introduction 

 With the continuously increasing power consumption of the United States, new sources 

of energy must be found for sector growth to continue. Total national energy production is 

estimated to increase by more than 20% by 2040, largely from an increase in power generation 

from natural gas and renewable sources [1]. One area of significant potential in energy 

production lies with offshore wind energy. Offshore wind energy has 4,150 GW of potential 

power capacity in the United States, almost four times the power capacity from all energy 

sources as of 2016 [2]. Due to higher and more consistent wind speeds, the resource potential per 

area for offshore wind is significantly higher than onshore sites. In particular, the southern 

Oregon coast and northern California coast has a wind power density of more than 800 W/m2, 

the highest resource area in the contiguous United States [3]. 

 While large offshore wind farms already exist – particularly in northern Europe [4] – the 

potential of offshore wind is being limited by current methods of turbine installation. Almost all 

offshore wind farms in commercial operation use a fixed foundation, using a driven-monopile 

underwater structure, where the base of the turbine is driven directly into the seabed in a manner 

analogous to land-based turbines. However, this method of installation becomes impractical and 

prohibitively expensive at depths greater than 30 meters due to practical limitations of building 

monopiles tall enough. Particularly off the west coast of North America, the gradient of the sea 

bed is so steep that offshore turbines cannot be practically installed this way due to the ocean 

depth [5]. Additionally, deeper waters – beyond the point where pile-driven wind turbines can be 

installed – typically allow for steadier, stronger winds, as well as being politically less 

problematic due to the decreased conflict with shipping lanes, fishing areas, and coastal land 

owners. 
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To take advantage of this wind resource, floating offshore wind is an area of significant 

focus. Floating offshore wind turbines (FOWTs) consist of the wind turbine buoyed on a floating 

platform, with several mooring cables connecting the floating platform to anchors embedded in 

the ocean floor. There are many types of platforms, anchors, and cables being considered for 

different situations and costs, as outlined in Table 1. Floating offshore wind turbines have been 

demonstrably shown to be functionally viable in simulations, full-scale prototypes, and in 

Hywind Scotland, the world’s first commercial floating wind farm [6]. However, offshore wind 

is still too expensive to be commercially viable on a widespread scale. According to a capital 

expenditure report prepared for the Scottish government in 2015, the cost for a single 6 MW 

floating wind prototype was about £5.2m/MW, far above the £3m/MW limit estimated for 

commercial deployment. To reduce the costs for this, significant optimization needs to be 

conducted for all components of the design for FOWTs. While a large percentage of the cost 

reduction needs to be done via optimizing the turbine platform (which falls outside the scope of 

this research), 4% of the cost reduction is expected to come from the optimization of the anchors 

and mooring for the FOWT [7]. 

Table 1. List of various parameters undergoing significant research for floating offshore wind turbines. 

Platform Anchor Mooring material Mooring orientation 

 Semi-submersible 

 Spar buoy 

 Tensioned-leg 

platform (TLP) 

 Plate anchor 

 Gravity anchor 

 Pilot 

 Drag embedment 

anchor 

 Chain 

 Cable 

 Fiber 

 Catenary 

 Transitional 

 TLB (diagonal) 

 TLP 

(perpendicular) 

 

 One hypothesized method to optimize mooring and anchors for FOWTs is to utilize 

shared mooring or anchors. In a typical array of FOWTs, each turbine has its own set of mooring 

lines, with a single mooring line connecting to a single anchor. For a shared mooring or anchor 

configuration, a turbine shares mooring lines and anchors with some or all of the adjacent 
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turbines. The cost benefits from such a system also increase as the size of a wind farm grows. 

While many methods exist to connect shared mooring and cables, all methods significantly 

reduce the length of mooring lines and the number of anchors needed in an array of FOWTs. 

 

Chapter 2: Previous Approaches 

2.1 Anchor and Mooring Optimization 

Significant research exists for optimizing standard mooring and anchoring for FOWTs. 

Molins et al. used a derivative-based optimization algorithm to optimize the design of a catenary 

mooring system for a scaled spar buoy platform based on the weight of the mooring lines [8]. 

Brommundt et al. introduced a tool for optimizing catenary mooring system for semi-

submersible FOWT platforms by minimizing the total mooring length to reduce cost using direct 

search methods [9]. This model takes into account both normal and worst-case environmental 

loadings over the life cycle of a FOWT using frequency domain analysis to determine the linear 

response of the platform. Chen et al. performed mooring optimization with similar methods for a 

FOWT with a spar buoy platform [10], and Benassai et al. has accomplished the same with chain 

cable catenary mooring lines for a candidate platform location in the southern Tyrrhenian Sea 

[11]. 

Fylling has created an automated optimization method using a computer program 

MOOROPT to minimize mooring and riser material costs for general floating systems using 

derivative-based optimization [12], later expanding the work specifically for FOWTs by 

developing WINDOPT [13]. While initially only including the number of mooring lines, riser 

lines, maximum loads, and fatigue constraints as parameters, WINDOPT expanded to include 
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parameters regarding the turbine dimensions, aerodynamic forces, and specific dimensions of a 

spar buoy platform. 

While these approaches have established the foundation for future research efforts, none 

of these works explore optimizing shared mooring. 

 

2.2 Multiline Modeling 

Shared mooring and anchor systems are a relatively new development, and concepts have 

only been independently developed with no academic consensus formed on which methods to 

pursue commercially. Hall has done significant research in quantifying the dynamic modeling of 

shared mooring lines for FOWTs [14] [15] as well as wave energy converters (WECs), with both 

Vissio et al. [16] and Sirnivas et al [17]. He has contributed significant effort towards the usage 

of MoorDyn, a lumped-mass formulation of dynamic modeling for mooring lines [18]. Of 

particular note, he and Connelly have researched the feasibility of a wind farm configuration 

where mooring lines are connected directly between platforms, as well as performed dynamics 

on such a system using FAST and MoorDyn [19]. 

Goldschmidt and Muskulus investigated a row, triangular, and rectangular configuration 

of coupled mooring systems and their associated costs and dynamics. The row arrangement in 

particular is analyzed in the time domain with the estimated effects of aerodynamics caused by 

the wind and wave forces [20]. 

Finally, Fontana et al. developed a “multiline” mooring configuration where each anchor 

moors lines from several FOWTs. These researchers also performed FAST analyses on a 

theoretical wind farm utilizing multiline anchors. In particular, these works analyze the different 
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anchor types that would work with this configuration most effectively, as the conceived multiline 

anchor setup requires the anchors to handle multidirectional loads [21]. 

 

2.3 Bayesian Optimization 

One class of derivative-free optimization is Bayesian optimization. This method is 

frequently used for evaluations that are computationally expensive. Bayesian optimization is 

typically formed by two main components: a statistical model where every combination of 

solutions has a normal distribution (called Gaussian process regression), and an acquisition 

function that selects where to sample. The Gaussian process is applied to an unknown function 

before evaluation (called a prior) that reflects the expected behavior of the function, often 

heuristically determined. After the function is evaluated at a set of points (often randomly 

selected), the results are treated as data, and is used to both update the prior and also to inform 

the acquisition function as to the best location to evaluate the function in the next iteration [22]. 

The inclusion of Gaussian process regression allows Bayesian optimization to solve 

optimization problems that have evaluations with normally-distributed noise, separating it from 

many other optimization methods. In particular, Bayesian optimization has been historically used 

for designing engineering systems, where noise is inherent due to physical effects that are 

uncertain and complex to evaluate precisely, such as stress and fatigue [23]. One application of 

this is through reliability-based design optimization (RBDO), where the uncertainty of the failure 

criteria of a system is analyzed and design decisions for the system are made based on Bayesian 

modeling and optimization [24]. In RBDO, the Gaussian process prior is the expected failure rate 

of a particular aspect of the analyzed system. Since failure rates are frequently expressed 
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probabilistically instead of as an explicit value, an optimized solution is still achievable with 

RBDO due to the tolerance of stochastic noise inherent to Bayesian optimization. 

 

 

2.4 Overall Findings 

Overall, at time of writing, the dynamic modeling of a single FOWT is well-developed 

and widely available. Additionally, there is significant research in optimizing various aspects of 

a single FOWT. The dynamic modeling for shared mooring and anchor systems is quickly 

developing, particularly with the aforementioned work of Hall, Fontana, and others. However, 

little research has been performed regarding optimization of shared mooring and anchor systems 

for wind farms, which this paper aims to address. 

 

Chapter 3: Problem Formulation 

3.1 Hypothesis 

The optimization scheme outlined in this paper is based on the same multiline 

configuration for shared mooring and anchors generated in previous research done by Fontana et 

al. In particular, this paper expands on the wind farm geometry by having a single anchor moor 

three OC4 / DeepCWind semisubmersible platforms supporting a standard NREL 5 MW turbine. 

A detailed visual depiction of the setup is shown in Figure 1. The mooring lines are catenary 

mooring lines with specifications, listed in Table 2, identical to that of the previous work done by 

the aforementioned authors. 
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Figure 1. Configuration of the analyzed floating offshore wind array. Circles indicate anchors, triangles indicate 

turbines, and lines indicate mooring lines. 

 

 

Table 2. Parameters of the analyzed floating offshore wind array. These are identical to the parameters used in 

previous work by Fontana et al. 

Parameters of Analyzed Floating Offshore Wind Array 

Ocean depth 200 meters 

Unstretched mooring line length 835 meters 

Mooring line seafloor lay length 243 meters 

Radial distance from fairleads to anchors 797 meters 

Radial distance from center of platform to fairleads 41 meters 

Mean wind speed 11.4 m/s 

Turbulence intensity 0.11 

Wave height 4 meters 

Peak spectral wave period 7.1 seconds 
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The previous literature from Fontana et al. identified that the multiline concept could 

reduce the number of anchors in a wind farm by a factor of three, if the anchors used can handle 

multi-directional loading. However, a further finding of the research – untested at the time – was 

that the dynamics of such a system would result in complex loading on the anchors due to the 

complicated coupling involved, which leads to decreased system reliability due to an increased 

risk of cascading turbine failures [25]. To counteract this decreased reliability, stronger anchors 

are required, which introduces a cost increase that could eliminate any benefit gained from 

cutting the number of anchors in the first place. 

However, it is possible that the complex dynamics caused by the coupling could actually 

provide a benefit; it has been hypothesized that having a small number of specific anchors 

strengthened a large amount would provide better reliability and/or be less expensive than 

strengthening all of the system anchors a small amount. 

To receive the greatest benefit from this hypothesis, the specific anchors – and the 

amount the anchors are strengthened beyond the “standard” strength in the system (henceforth 

referred to as “overstrength”) – needs to be optimized. Determining the optimal anchors in a 

specific setup of this multiline anchor configuration (specified in section 3.2), how much they 

should be overstrengthened, and whether this provides a significant improvement to reliability 

versus strengthening the entire system a small amount, are the primary goals of this paper. 

 

3.2 Objective Function and Simulation Description 

The objective function of the problem being addressed is to maximize the reliability of an 

array of FOWTs, utilizing the multiline anchor scheme with a predetermined number of 

overstrengthened anchors, as discussed above. “Reliability” in this context is a unitless index 
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factor representing the mean return period to failure of the array, typically falling between 1 and 

2. The reliability of a particular array configuration is determined using a set of MATLAB 

functions created to evaluate this system1. These MATLAB functions first create the general 

geometric layout of the turbine platforms and the anchors for the array, including the number of 

rows and columns, the number of turbines and anchors, the number of simulations, and the 

spacing between turbines. Several sets of data from previous FAST analyses are loaded. These 

datasets specify the forces from the wind and waves from a specific direction, the wave surge 

and sway from the given wave direction, and the calculated anchor and mooring line demands 

from multiple simulations. For the sake of this evaluation, the direction was set to 0⁰, due north. 

The simulation also accounts for the positioning displacements of the platforms due to wave 

surge and sway. 

The simulation then configures a wind farm with a consistent geometry. Using the 

multiline concept previously detailed, the simulation uses an array consisting of 120 anchors and 

100 turbines, as shown in Figure 1. The farm is set up in a hexagonal design with all turbines 

beginning in specific locations at regular intervals, with 10 turbines per row and 5 per column, 

each turbine separated by 1,450.8 meters in single rows and 2,512.8 meters in single columns. 

Adjacent rows and columns are offset by half of the distance between turbines within the same 

row. Each anchor has lines connecting from three different turbines (unless the anchor is on the 

edge of the array), initially at 120 degrees apart. The base anchor strength (before any 

overstrengthening) is set at 3460 MPa, and the mooring line strength is 5111 MPa. 

Once the geometry and maximum loads are set, the simulation determines the demands 

on all lines and anchors by sampling the demands from the loaded FAST data on a lognormal 

                                                           
1 The MATLAB functions used as the evaluation function, as well as the associated loading data, was provided by 
Spencer Hallowell and Sanjay Arwade of the University of Massachusetts, Amherst. 
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distribution. If the strength capacity of any line or anchor is less than the demand for that 

component, it fails, and the function changes the anchor capacity and demands for the 

surrounding anchors as a result of the failure. The simulation makes use of various other 

subfunctions to determine these failures, their effects, and the resulting change in demands. Once 

determined, the simulation runs again to determine if more failures occur as a result of the 

changes, and the process repeats. The simulation runs until every anchor and turbine has a 

demand less than its capacity. The entire process is then repeated 5000 times. 

At this point, the simulation determines which turbines fail each simulation (“fail” 

meaning any of the adjacent anchors also failed). The reliability value for the configuration is 

determined by: 

 

Reliability =  −𝛷[1 − (1 − 𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑓𝑎𝑖𝑙1)(1 − 𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑓𝑎𝑖𝑙2)(1 − 𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑓𝑎𝑖𝑙3)] 

 

where Φ is the cumulative distribution function of the standard normal distribution, and  n-

turbinefail1, nturbinefail2, and nturbinefail3 are total failure rates of all turbines at each of the three anchor 

connection points. More specifically, 

𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑓𝑎𝑖𝑙𝑥 =  
(

Total anchor failures at connection point 𝑥
Total number of turbines

)

Total number of simulations
 

 

3.3 Optimization Algorithm 

To find the maximum reliability and the optimal anchors to overstrengthen in this 

optimization problem, a binary genetic algorithm (GA) was used as the basis of the overall 

optimization algorithm. However, due to a significant amount of stochastic noise in the 
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generated solutions created by the sampling of the FAST data in the evaluation, using only a GA 

failed to converge to an optimal solution (see Section 4.1). The stochastic noise combined with 

the very large number of potential configurations (about 116 trillion if overstrengthening 10 

anchors) necessitated a unique hybrid optimization scheme that introduces elements of Bayesian 

optimization common in RBDO applications, and an inter-test archive of existing solutions. 

 

3.3.1 Binary Genetic Algorithm Elements 

In the algorithm, overstrengthened anchors are denoted as 1, while normal strength 

anchors are denoted as 0. The algorithm takes the number of overstrengthened anchors per array 

(nOSanchors) and the overstrength factor (i.e. the multiplier placed on the anchor strength of the 

selected overstrengthened anchors) as inputs, with the best reliability value and the 

corresponding overstrengthened anchors as outputs. The anchor numbering begins in the 

southeast corner of the array and proceeds north, returning to the southern end of the next 

column of anchors to the west. At the start of the optimization process, a population is generated 

with nOSanchors randomly selected overstrengthened anchors in each chromosome. The simulation 

discussed in the previous section is used as the fitness function, which evaluates each 

configuration of overstrengthened anchors and outputs a reliability value. 

After sorting the solutions by reliability value and the corresponding arrays from best to 

worst, the best reliability is evaluated. If it is better than the existing best reliability, this value is 

overwritten, and the new best set of overstrengthened anchors is saved. 

The fittest 20% of each set of solutions have their traits cloned directly to the next 

generation. This high cloning rate is used to decrease stochasticity and decrease the time to 

convergence. 
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The process of selection begins with a kill of all below-average chromosomes. The 

remaining solutions are normalized as follows: 

 

Normalized reliability of array 𝑗 =  
Reliability of array 𝑗 − Mean reliability

∑ (Reliability of array 𝑖 − Mean reliability)𝑛
𝑖=1

 

 

where n is the number of above-average arrays. This normalization is done to exaggerate good 

solutions, as the range of reliability values within a population was relatively small (typically 

0.05 or less), to which selection was sensitive. 

Selection was accomplished by ordering the normalized reliability values linearly, then 

randomly selecting a value within the range of normalized reliabilities. For crossover, instead of 

using a crossover point, a random permutation of the overstrengthened anchors from the selected 

parents that match the inputted number of overstrengthened anchors is selected. 60% of the 

solutions for the following generation consisted of children. 

The remaining 20% of chromosomes for the following generation were randomly 

generated in the same manner as the first generation. This was done because having all 

chromosomes be composed entirely of children resulted in convergence to local maxima instead 

of a globally optimal solution. 

This optimization process iterates for 100 iterations. At the conclusion of the last 

iteration, the algorithm outputs the best overall reliability and the corresponding set of 

overstrengthened anchors. 

The determined parameters of the GA formulation, as well as grounds for the selection of 

each parameter value, are included in Table 3. 
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Table 3. GA parameters, selected values, and rationale for selecting each value. 

Binary Genetic Algorithm Parameters 

Parameter Value Grounds 

Iteration Limit 100 
Smaller values led to worse solutions; larger values did 

not converge any further 

Population size 100 
Smaller values led to worse solutions; larger values did 

not converge any further 

Number of 

overstrengthened 

anchors 

10 

(typical) 

Selected a small enough number to where the most 

important anchors would be obvious, but a large enough 

value to where configuration trends and patterns could be 

identified. 

Crossover percentage 60% 
Smaller values do not converge; larger values quickly 

converge to local maxima 

Cloning percentage 20% 
Smaller values converge too slowly; larger values 

converge quicker, but to local maxima 

Mutation percentage 0% 
Stochasticity in evaluation prevents further stochasticity 

from being required 

 

3.3.2 Bayesian Optimization Elements 

In order to combat the stochastic noise resulting in a lack of convergence when 

optimizing with a binary GA, elements of Bayesian optimization were added to the algorithm. As 

discussed earlier, Bayesian optimization is tolerant to stochastic noise, making it suitable for this 

optimization problem. For this problem, the normal distribution of the reliability results from the 

evaluation simulation takes the form of the Gaussian process prior of a Bayesian optimization 

problem. The typical evaluation step in a GA is thus replaced by a Bayesian evaluation process. 

Specifically, the evaluation process now takes the following form: 

1. The set of overstrengthened anchors for a given solution is read into the program. 

a. If the exact permutation of overstrengthened anchors has not been evaluated 

before, the simulation evaluates the reliability of that solution 25 times, then 

calculates and saves the mean reliability for that permutation of 

overstrengthened anchors. 
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b. If the exact permutation of overstrengthened anchors has been previously 

evaluated, the previously saved mean reliability is extracted, and the 

simulation evaluates the reliability an additional time. The mean is then 

recalculated and saved for that permutation of overstrengthened anchors, 

overwriting the previously saved mean. 

2. Each permutation of overstrengthened anchors encountered, the corresponding 

reliability values, and the corresponding number of times a permutation was 

evaluated, are each saved in ordered arrays to be referenced in future iterations.  

 

This evaluation process was tested in isolation with five randomly selected sets of 

overstrengthened anchors, each evaluated for 250 iterations, then repeated four additional times. 

As shown in Figure 2, the noise associated with the evaluated reliabilities decreases significantly 

as the number of evaluations increases. The results of this initial test showed that the standard 

deviation of the reliability values had dropped below 0.001 for all tested overstrengthened anchor 

solutions by 25 iterations, as shown in Figure 3. Therefore, as discussed in the new evaluation 

process above, the optimization algorithm evaluated each new solution 25 times. Note that this 

decision disregards the temporary increase of the black line back above the 0.001 standard 

deviation mark. The benefits gained from increasing the number of initial tests to 40+ were 

assumed to be marginal compared to the increase in computational expense. 
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Figure 2. Results from running modified evaluation process five times for five different sets of overstrengthened 

anchors (each set indicated by a different color). 
 

Figure 3. Standard deviation vs. Iteration Count for the five sets of overstrengthened anchors in Figure 2. 
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The cloning, selection, and crossover from the GA elements of the optimization 

algorithm act as the acquisition function of the algorithm from a Bayesian perspective, thus 

satisfying the two main components of a Bayesian optimization algorithm. 

 

3.3.3 Solution Archiving 

Due to the very large number of permutations of overstrengthened anchors, an archive of 

CSV files was established to save the arrays of overstrengthened anchor configurations, 

corresponding reliabilities, and the number of tests done for each configuration. These CSV files 

would be retrieved and read into the optimization algorithm each time it ran, effectively creating 

a running archive of all configurations that have been tested by the optimization algorithm 

throughout all of the times it has ever ran (within the specified directory). As the optimization 

algorithm was tested increasingly more, the archive saved an increasing amount of computation 

time. 

 

Chapter 4: Results and Discussion 

4.1 Initial Results 

As previously mentioned, the initial results of the optimization scheme when the 

algorithm was exclusively a GA failed to result in an optimal solution or convergent behavior. 

The behavior seen consistently showed the solution improving for approximately 10 iterations 

before plateauing to a non-convergent value (i.e. the “plateau” reliability would be significantly 

different with every test). This behavior persisted regardless of the number of iterations the 

algorithm ran, the population size or crossover percentage used, or the method of crossover used. 
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As shown in Figure 4, after initial improvements to the reliability, the best reliability found in 

each iteration would vary drastically, with a new overall best reliability seeming to be found 

merely by chance, with the 50th-percentile and worst reliabilities showing no convergent 

behavior. 

 

Figure 4. Iteration vs. Reliability for the GA-only optimization algorithm. The blue line indicates overall best 

reliability, the red line indicates iteration-best reliability, the black line indicates reliability of the 50th percentile of 

each iteration, and the green line indicates iteration-worst reliability. Note the lack of convergence between 

iteration-best reliabilities. 

 

Despite improvements to the GA that were meant to reduce stochastic behavior, the 

evaluation itself was found to be the cause of the stochastic results. The probabilistically 

determined selection of anchor loads from the FAST analyses creates a small amount of noise in 

the simulation. However, the GA is highly sensitive to noise for this problem, as even minor 

variations in calculated reliability prevented convergence. The remaining stochasticity is further 

emphasized in Figure 5, which shows a single configuration evaluated 500 times, with an 

apparent Gaussian distribution over a reliability range of about 0.04, which is a similar range to 

the range of reliabilities within a first-generation population in the optimization algorithm. The 

noise in the simulation was substantial enough to where (in an extreme example) the 
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overstrengthened anchor set with the best reliability after 20 generations in an optimization test 

proceeds to have the fourth-worst reliability in the 21st generation of the same test. 

 

Figure 5. Histogram showing the reliability vs. frequency of a single set of overstrengthened anchors evaluated 500 

times. 
 

4.2 Final Results 

One of the first notable results discovered was the behavior of the overstrength factor. As 

the overstrength factor was an algorithm parameter instead of an optimization variable, the 

optimization algorithm was simply run multiple times with varying overstrength factors and a 

varying number of overstrengthened anchors. 

As shown in Figure 6, the lower overstrength values implicated reduced reliability, with 

the lowest overstrength factor of 1.1 diverging even at very low numbers of overstrengthened 

anchors, and 1.2 showing very little increase in reliability value if operating on more than five 

overstrengthened anchors. However, increasing the overstrength factor beyond 1.3 only gives 

marginal improvement in reliability, regardless of the number of overstrengthened anchors. It 
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appears that the reliability for a 1.3 overstrength factor begins to separate itself from higher 

overstrength factors beginning after 15 overstrengthened anchors, although this was not further 

tested due to the majority of the testing for this problem being constrained to 10 

overstrengthened anchors. As such, the overstrength factor was set to 1.3 for all optimization 

tests.  

 

Figure 6. Number of overstrengthened anchors vs. optimized reliability for overstrength factors ranging 1.1 to 2. 

 

With the addition of the Bayesian optimization and archiving, convergence to an optimal 

fitness level was achieved, though multiple optimal solutions were found. Specifically, reliability 

values converged to an optimal value of 1.2315 ± 0.0005, but the selected set of 

overstrengthened anchors would be somewhat different every time the algorithm converged on 

this reliability value. An example of this through eight tests of the optimization algorithm is 

shown in Table 4. 
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Table 4. Results of eight successful optimization attempts. 

Optimization Test Results – 10 Overstrengthened Anchors, 1.3 OSF 

Optimization Test Reliability Overstrengthened Anchors 

1 1.2312 23  38  48  51  56  61  69  80  89  92 

2 1.231 13  23  35  48  56  67  71  89  91  93 

3 1.2319 23  27  49  51  56  73  78  83  90  92 

4 1.232 23  36  40  56  59  60  68  83  89  92 

5 1.232  9   34  36  51  56  70  72  78  89  94 

6 1.231  5   34  47  56  59  73  78  83  89  92 

7 1.2313 27  34  45  48  67  69  71  89  93  95 

8 1.2311   9  23  39  45  56  70  73  78  93  100 

 

These eight results were then charted simultaneously on a mapped wind farm layout, with 

different colors representing the number of times a specific anchor was selected across all 

optimization tests, functioning as a heat map. The results of this are shown in Figure 7. 
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Figure 7. Heat map of the analyzed wind array, illustrating the frequency of selected overstrengthened anchors from 

the eight successful optimization tests in Table 4. 
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Upon analysis, there appears to be a moderate correlation between specific regions and 

the overstrengthening of anchors, as highlighted in Figure 8.

 

Figure 8. Heat map of the analyzed wind array, with boxes enclosing noteworthy regions. 

 

The highlighted areas are as follows: 

 Region A is the southernmost row in the array with multiline anchors. At least 

three anchors are always overstrengthened in every optimized array. The selected 

overstrengthened anchors are frequently spread out from east to west rather than 

being concentrated at any one section of the row. 
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 Region B is a set of three diagonal anchors in the central-west of the array. At 

least one of these anchors is overstrengthened in every optimized array. If two of 

the anchors were overstrengthened, it would be the top and bottom anchor in the 

region, never two adjacent anchors. 

 Region C is the center part of the fourth northernmost row in the array. With one 

exception, every optimized array had at least one overstrengthened anchor in this 

region. Overstrengthened anchors also never appeared above this row. 

 Region D is a hexagonal region of 7 anchors located slightly south of the center of 

the array. 1 to 3 anchors in this region were always overstrengthened in every 

optimized array. If multiple anchors were selected in this region, adjacent anchors 

were rarely selected. 

Interestingly, with one exception (see Figure 9 below), nine of the 10 overstrengthened 

anchors would always fall within these four regions; there always is one overstrengthened anchor 

that falls in some other location in the array. This is likely a coincidence within the results rather 

than an indication of a specific behavior. 

Figures 9 and 10 show two examples of optimized arrays, with a layover of the specified 

regions of interest. Note that Figure 9 provides several exceptions to several correlations 

discussed above. 
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Figure 9. Optimized solution for 10 overstrengthened anchors, with some deviation from observed trends, 1.3 

overstrength factor. 
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Figure 10. Optimized solution for 10 overstrengthened anchors, with adherence to observed trends, 1.3 

overstrength factor. 

 

While many of the aforementioned regions and trends are only moderately correlated, 

there appear to be three strong correlations: 

1. Region A has the highest concentration of overstrengthened anchors 

2. The southern half of the array has a higher concentration of overstrengthened 

anchors than the northern half 

3. The “center of mass” of all overstrengthened anchors falls close to the central 

column 
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To further test the behavior of the anchor selection, the optimization algorithm was tested 

with overstrengthening three anchors and 30 anchors. The results from these optimization tests 

are shown in Figures 11 and 12. 

 

Figure 11. Optimized solution for three overstrengthened anchors, 1.3 overstrength factor. 
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Figure 12. Optimized solution for 30 overstrengthened anchors, 1.3 overstrength factor. 
 

Overall, the same strong correlations found in the tests with 10 overstrengthened anchors 

also appear in the tests with three and 30 overstrengthened anchors. As shown in Figure 11, one 

overstrengthened anchor falls within each of Regions A, B, and D. for the test with three 

overstrengthened anchors. In Figure 12, every anchor in Region A is overstrengthened, and the 

concentration towards the southern half of the array still holds true, while maintaining east-west 

symmetry. 

Despite a single optimized configuration not being identified, the rationale behind the 

trends for the selection of overstrengthened anchors offers insight into which anchors to target in 
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the design of an array utilizing this multiline anchor theory. The concentration of 

overstrengthened anchors in the southern half of the array – especially in Region A – is likely 

due to the wind and wave forces acting on the array coming from the south. If an anchor in the 

southern part of the array fails, the coupling of the turbines and anchors makes it more likely for 

a single failure to lead to cascading failures than if an anchor in the north fails. As discussed by 

Arwade et al., this has the highest impact for multiline anchors near the edge of the array, 

explaining why Region A sees the highest concentration of overstrengthened anchors [26].  

 

4.3 Comparison to Original Hypothesis 

Once a convergent solution was identified, the resulting reliabilities from the 

optimization scheme were compared to the reliabilities of the same FOWT array where the 

strength of all anchors is increased to a lesser degree. The latter was acquired by testing the same 

simulation initially given (only all 120 array anchors were "overstrengthened") 500 times per 

overstrength factor and taking the mean reliability. The results of these tests are listed in Figure 

13. 
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Figure 13. Reliability comparison between optimization tests and comparison test with all anchors 

overstrengthened. 
 

Even when anchors are optimized, the reliability from strengthening all anchors quickly 

surpasses the reliability for only overstrengthening a small number of anchors. This suggests the 

reliability of a FOWT array using this multiline concept is much more closely tied to the number 

of anchors strengthened than which anchors are strengthened, or by how much. Notably, the 

reliability value for the optimization test with 30 overstrengthened anchors appears substantially 

more competitive with the mass strengthening reliabilities. Drawing from this, it is possible there 

is a point where overstrengthening some larger number of optimized anchors (more than 30, less 

than 120) provides increased benefit over increasing the overall anchor strength, and optimizing 

the anchors for that scenario could lead to some credence to the original hypothesis. The number 

and optimized location of these anchors, as well as the cost-benefit analysis of this concept 
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versus simply strengthening all of the anchors to a lesser amount, is an area of substantial interest 

in future research. 

 

Chapter 5: Conclusion and Future Work 

 Floating offshore wind provides a substantial untapped supply of energy that can be 

utilized to meet increasing energy demand in the United States. However, the substantial costs 

associated with floating offshore wind prevent it from currently being commercially viable, and 

design optimization is required for the floating offshore wind to approach viability. A method 

has been proposed to decrease the cost of anchoring by connecting mooring lines from multiple 

turbines to a single anchor, substantially reducing the cost of the anchors for a large farm. My 

proposed hypothesis was that a high system reliability level could be maintained for such an 

array by strengthening the most important anchors more than the majority of the anchors in the 

array. Optimization was required to determine the best anchors to strengthen.  

The simulation used to evaluate the reliability of a hypothetical floating wind array uses 

data from prior FAST analyses to determine the mean number of turbine and anchor failures that 

would result from the loading scenario specified by the user, as detailed in section 3.2. A binary 

genetic algorithm was initially attempted as a means to maximize the reliability of the simulation 

for a preset number of overstrengthened anchors and an overstrength factor, but this optimization 

algorithm proved to be sensitive to noisy evaluations resulting from probabilistic sampling 

within the provided simulations, and failed to converge as a result. To counter this, aspects of 

Bayesian optimization, such as treating repeated evaluations as a Gaussian process prior, made 

the optimization algorithm resistant to noise and succeeded in converging to a single reliability 

value, albeit with many optimal solutions. 
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As discussed in Chapter 4, the resulting configurations from optimized arrays show 

selected overstrengthened anchors being concentrated in the direction of wind and wave forces, 

due to the effects of cascading failures if these components fail. However, optimizing and 

significantly strengthening a small number of anchors failed to match the reliability of slightly 

strengthening all array anchors, though the results suggest overstrengthening a much larger 

number of anchors in optimized locations could still provide substantial benefits to the overall 

reliability of the system. 

Future work will entail identifying the relation between the number of optimized anchors 

and the reliability for a much larger set of overstrengthened anchors, and identifying if there is a 

point where the optimized overstrengthening method provides greater benefit than simply 

overstrengthening all array anchors. The explicit costs of these two options – particularly the 

potential savings to the construction of a large floating offshore wind farm – also warrants future 

investigation. 
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