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Marine renewable energy has the potential to provide clean, reliable power to coastal com-

munities and offshore facilities. However, the effects that marine energy development might

have on the environment are not yet well understood. One environmental risk of particular

concern is that of collision between an animal and a marine energy converter, but conduct-

ing the requisite environmental monitoring to understand this risk has presented a challenge

at marine energy sites around the world for several reasons. First, if collision does occur,

it is likely to be a rare event, meaning that detection requires continuous monitoring over

extended deployments. Second, there is no single sensor that can provide all of the neces-

sary information, and a combination of active acoustic, passive acoustic, and optical sensors

is required. Third, these sensors can rapidly accrue vast volumes of data (petabyte-scale),

making it difficult to extract insight from collected data. Finally, waves and currents at

marine energy sites complicate the deployment of any monitoring instrumentation.

Integrated instrumentation platforms that combine sensors into a single platform can

address some of these challenges, because they can provide all of the necessary data and

reduce deployment complexity. However, operation of such a platform must meet three

directives in order to be most effective: 1) avoid biasing animal behavior through the use

of instrumentation, 2) reliably detect rare events, and 3) avoid collection of unmanageable



volumes of data. In this thesis, it is demonstrated that it is possible to simultaneously meet

all three of these directives. This is demonstrated using the Adaptable Monitoring Package

(AMP), an integrated instrumentation platform that combines multibeam sonars, optical

cameras, hydrophones, and an acoustic Doppler current profiler.

Artificial illumination is necessary to collect data from optical cameras when ambient light

is not available. However, this light can either attract or repel animals. To minimize these

effects (e.g., meet directive 1), the AMP uses detection, tracking, and classification of targets

in the multibeam sonar data to restrict the use of artificial illumination to periods when a

target of interest is present and might be detectable by the optical cameras. Information

about target presence is also used to limit data archival to periods when a target of interest

is present and avoid curation of data that does not contain any useful information (e.g.,

meeting directives 2 and 3). To benchmark this capability, real-time target detection and

tracking are used to limit data archival to periods when any target of potential interest is

present during a deployment of the AMP in Sequim Bay, WA. The target detection and

tracking approach was found to have a true negative rate of 0.99 (e.g., an estimated 1% of

targets of interest were not recorded), but 45% of recorded data did not contain a biological

target.

To address this relatively high false positive rate, recorded data were used to train machine

learning classification of tracked targets. Three machine learning algorithms, trained using

varying parameters and features, were evaluated for this task. A random forest algorithm was

found to perform best, and the resulting classification model was able to distinguish between

biological targets (e.g., seals, fish) and non-biological targets (e.g., acoustic artifacts) with a

true positive rate of 0.97 and a false negative rate of 0.13. This model was then implemented

in real-time during a second deployment of the AMP and used to limit data acquisition to

periods when biological targets were predicted to be present. The model achieved the same

true positive rate and a false positive rate of 0.23 in real-time after re-training with site



specific data. From these results, general recommendations are made for implementation of

real-time classification of biological targets in multibeam sonar data at new marine energy

sites.

All active acoustic sensors used on the Adaptable Monitoring Package, including the

multibeam sonar used for real-time classification, have operating frequencies above the upper

limit of marine mammal hearing. However, high-frequency transducers can still produce

sound at lower frequencies audible to marine mammals. A comprehensive evaluation of the

acoustic emissions of four active acoustic transducers used on the Adaptable Monitoring

Package was conducted to understand whether they might cause hearing damage or bias

marine mammal hearing (e.g., violating directive 1). All four transducers were found to

produce measurable sound below 160 kHz, the reported upper limit of marine mammal

hearing. A spatial map of the acoustic emissions of each sonar was used to evaluate potential

effects on marine mammal hearing if the transducer were continuously operated from a

stationary platform. Based on the cumulative sound exposure level metric, the acoustic

emissions from any of the the transducers are unlikely to cause hearing damage to marine

mammals. However, the extent of audibility is estimated to be on the order of 100 m, and

further research is needed to understand how this might affect marine mammal behavior.

In sum, this thesis provides a framework for effective environmental monitoring that can

be used to reduce the the uncertainty surrounding the environmental effects of marine re-

newable energy. Further, many aspects are widely applicable to the ocean instrumentation

community. Automatic classification of fauna in multibeam sonar data had not been previ-

ously demonstrated, and has applications in biological research. The methods developed for

evaluation of the acoustic emissions of active acoustic sensors allow for effective comparison

between transducers, which can be used to inform sensor selection and government regulation

of their use.
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1

Chapter 1

INTRODUCTION

1.1 Environmental Monitoring for Marine Renewable Energy

Marine renewable energy has the potential to provide clean, reliable power to coastal com-

munities and offshore facilities. However, the effects that marine energy development might

have on the marine environment are not yet well understood [8]. This has proven to be a

barrier to marine energy development around the world. For example, in northern Scotland,

development of tidal energy was limited pending more information about the impacts that

tidal turbines might have on harbor seals, a species of particular environmental concern in

that area [57]. A better understanding of the environmental effects of marine renewable en-

ergy will enable sustainable development of the sector through either mitigation or effective

regulation of any negative environmental effects found to be substantial.

One of the primary environmental concerns surrounding the development of marine re-

newable energy is the risk of collision between marine mammals, fish, or diving birds and

a marine energy converter (MEC) [8]. There are many approaches to understanding this

risk. Biological sampling has been used to understand the population densities of different

species at marine energy sites, which provides insight into the probability that an animal

will encounter a MEC (e.g., [6]). Studies of marine mammal behavioral responses to the

sound produced by MECs have been conducted to better understand whether animals will

be attracted to or avoid the sound (e.g., [29, 56]). These biological studies have provided

input (e.g., population density) for models that predict the probability that collision will

occur (e.g., [9, 25]). Modeling efforts have unanimously indicated that if collision between

an animal and a turbine does occur, it will be a rare event, but time-resolved data monitoring
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animal behavior around MECs is required to validate and improve these models. However,

collecting these data has proven a perennial challenge [48, 8].

There are several unique challenges to conducting effective environmental monitoring at

marine energy sites. First, there is no single oceanographic sensor that can provide all of

the necessary information [48]. Optical cameras provide high-resolution imagery sufficient

for species-level classification of marine fauna, but can only operate when there is sufficient

light, and their detection range is highly dependent on water clarity [35]. Passive acoustic

instruments, such as hydrophones, can detect and localize vocalizing animals at long ranges

(on the order of thousands of meters in deep water [44]), but cannot provide information

about non-vocalizing species. Active acoustic instruments, such as multibeam sonar, can

detect targets tens of meters away without the use of light [28]. However, because of the

relatively low-resolution of multibeam sonar images, species-level (or even genus-level) clas-

sification is frequently not possible without fusion with co-temporal data from other sensors,

such as optical cameras [10].

Second, the characteristics of marine energy sites complicate the deployment, mainte-

nance, and recovery of instrumentation. Strong waves or tidal currents limit time windows

for marine operations. At wave energy sites, operations are limited to periods with relatively

low wave activity, which may occur infrequently, especially during winter months [2]. At

tidal energy sites, operations can be conducted during tidal exchanges when currents are

at a minimum, but slack tide windows are brief. Once deployed, instrumentation systems

can be subject to extreme forces from waves and currents, mandating the design of robust

instrumentation platforms that can withstand these conditions [33]. High-energy conditions

can also impede the interpretation of collected data. Bubbles and turbulence can produce

high-intensity signals in active acoustic data [43], and flow noise can elevate sound levels at

low frequencies in passive acoustic data when there is water motion relative to a hydrophone

element [4].

Third, sound or light produced by sensors may bias the behavior of the animals being

monitored. Artificial light (used to illuminate the fields of view of optical cameras) can either
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attract or repel fish [39]. If active acoustic transducers produce sound within the range of

animal hearing, it may cause harm to the animals in the form of temporary or permanent

threshold shifts [45] or affect their behavior [27, 60].

Finally, if any interaction between marine fauna and a MEC occurs, it is likely to be a

rare event. Therefore, data must be collected over long periods (on the order of months) to

reliably capture these events. However, if monitoring sensors were continually operated for

these time windows, they would quickly quickly accrue unmanageable volumes of data. For

example, a single multibeam sonar can produce over a terabyte of data in a single month,

creating obvious challenges for data storage, human review, and post-processing. As a result,

existing data sets have been referred to as DRIP-y, or “data rich, information poor” [66].

These challenges can be distilled to three directives for an effective environmental moni-

toring platform:

1. Collect data without altering the environment through use of sensors (e.g., production

of sound that biases animal behavior)

2. Capture rare events (e.g., presence of a marine mammal near a tidal turbine)

3. Minimize collection of data that contains no useful information

These directives are presented in order of priority. For example, if a platform is effective

in capturing rare events, but does so in a way that alters the behavior of the fish or ma-

rine mammals being monitored, the collected data would not represent the environmental

interactions that would occur if the monitoring instrumentation was not present. Similarly,

collection of data from all sensors on a sparse duty cycle would minimize data volumes, but

is likely to miss rare events of interest.

1.2 Integrated Instrumentation Platforms

Integrated instrumentation platforms that combine monitoring sensors into a single, stream-

lined package may be able to simultaneously meet all three of the directives outlined in the
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previous section. When a variety of sensors are used in aggregate, they can overcome some

of the challenges inherent to operation of ocean instrumentation. For example, if a target is

detected concurrently by a multibeam sonar and optical camera, the target can be classified

with high certainty at close range in the optical camera data, and its behavior can be moni-

tored over a long range in the multibeam sonar data. In addition, deployment and recovery

of integrated platforms is much more straightforward than deployment of individual sensors,

reducing the challenges associated with conducting marine operations at marine energy sites.

Development of an integrated instrumentation platform that meets all three directives can

be framed in a series of three generations. The first generation involves the development of

the requisite hardware to deploy and power all sensors as a single package. A first generation

platform may capture rare events if data are collected continuously (i.e., meeting directive

2), but is likely to accrue unmanageable volumes of data, and offers no mechanism to limit

the use of instruments that might alter the environment (i.e., not meeting directives 1 and

3).

The second generation of development involves the development of software to central-

ize sensor control and data acquisition. This allows for synchronization of data streams

and simplified control and configuration of sensors. Second generation development also

provides a mechanism for collection of data on a predetermined duty cycle, which reduces

data storage requirements and environmental impact, but is likely to miss rare events (i.e.,

meeting directives 1 and 3, but not directive 2). While there are advantages to second gen-

eration development over individual deployment of sensors, it typically requires discarding

the manufacturer-provided sensor control and data acquisition software, and may require

storage of data in formats that are not compatible with developer software for review and

processing. In many cases, developer software licenses are a significant portion of the cost

of an oceanographic instrument, and the costs of second generation integration may not

outweigh the benefits.

Most integrated instrumentation platforms that have been deployed and tested to date

are second generation platforms that either collect data continuously or on a duty cycle.
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These platforms include the Fundy Advanced Sensor Technology (FAST) and FLOW and

Benthic ECology (FLOWBEC) platforms. The FAST platform was developed for environ-

mental monitoring at a tidal energy test site in the Bay of Fundy, Canada. FAST is a cabled

platform (e.g., data are continuously streamed to shore) that includes active and passive

acoustic sensors [1]. The FLOWBEC platform has been deployed at wave and tidal energy

sites around the United Kingdom. FLOWBEC is an autonomous platform (i.e., powered

by onboard batteries) that includes active acoustic sensors (a multibeam sonar, a multifre-

quency echosounder, and an acoustic Doppler velocimeter) and a fluorometer that measures

chlorophyll and turbidity. Data from all FLOWBEC sensors are continuously recorded over

a two-week deployment period (one spring-neap tidal cycle), after which the batteries must

be recharged prior to redeployment [68]. Automatic target detection and tracking algorithms

are used in post-processing to identify events of interest in the collected data [67].

First and second generation development pose significant challenges for both hardware

and software development. However, this thesis is focused on third generation capabilities.

A third generation system leverages the data streams available in real-time on an integrated

instrumentation platform for automatic adaptive action. For example, real-time detection

and classification of a school of fish can trigger data archival from any sensors that might be

able to detect it. The use of sensors which may bias animal behavior can also be restricted

to minimize their impact. For example, use of artificial illumination can be limited to

periods when a target of interest is detected within the field-of-view of optical cameras on a

multibeam sonar. In this way, a third generation system can simultaneously achieve all three

directives for an effective monitoring platform. Prior to the research presented in this thesis,

the third generation of integration had not been achieved by any monitoring platform.

Development of a third generation platform requires the ability to automatically detect

and classify targets in the sensor data streams to inform automatic adaptive action and

an understanding of how the monitoring sensors might bias the behavior of animals being

monitored so that their environmental impact can be effectively minimized. These require-

ments are addressed in this thesis. Chapter 2 provides relevant background on the Adaptable
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Monitoring Package (AMP), the integrated instrumentation platform used to demonstrate

third generation capabilities. In Chapter 3, the capabilities of the AMP are assessed and

the potential for third generation development of this system is evaluated. Chapter 4 details

the development of real-time automatic target classification capabilities for a multibeam

sonar integrated into the AMP. Finally, a comprehensive evaluation of acoustic emissions

from active acoustic sensors used for environmental monitoring within the context of marine

mammal hearing can be found in Chapter 5.
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Chapter 2

BACKGROUND: THE ADAPTABLE MONITORING
PACKAGE

The following chapters of this thesis detail the development of third generation capabili-

ties for the Adaptable Monitoring Package (AMP), an integrated instrumentation platform

that combines active acoustic, passive acoustic, and optical sensors for environmental mon-

itoring at marine renewable energy sites. However, a basic understanding of the first and

second generation development of the AMP platform is useful in interpreting results. This

chapter provides an overview of the AMP platform, including the underlying hardware, the

integrated sensors, and the core software that integrates these sensors.

2.1 The Adaptable Monitoring Package

The AMP refers to a set of electronics, sensors, and software (the AMP “backbone”) that

can be adapted to a variety of monitoring scenarios (see Figure 2.1). At the core of the

AMP hardware is an integration hub that provides 48-volt, 24-volt, or 12-volt power to

and enables communication with each sensor. The integration hub also enables real-time

monitoring of the temperature, humidity, and current draw of each sensor. Because most

oceanographic sensors use either serial or Ethernet communication, the integration hub ac-

commodates both protocols. Integration of sensors that use serial communications is enabled

by serial-to-Ethernet converters that convert data to Ethernet protocol. All data streams are

converted from Ethernet to fiber media for transmission to shore. A second Ethernet/fiber-

optic converter on shore converts data streams back to Ethernet protocol so that they can

be read by a shore computer that handles data acquisition and control.

The core AMP software operates continuously on the shore computer. This software is
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Figure 2.1: Diagram of overall AMP system architecture. Components in blue compose the
AMP “backbone,” while components in green are configured specifically for each deployment.
Orange arrows indicate the flow of data, and black arrows indicate the flow of controls.

written in LabVIEW (National Instruments) and handles data acquisition and control of the

integration hub and sensors. One central control program (LabVIEW “virtual instrument”)

handles communications with the integration hub - enabling power to individual sensors

and monitoring current draw, temperature, and humidity. Each sensor is operated by an

individual “virtual instrument” that handles configuration of that sensor (e.g., range of a

multibeam sonar) and parses the sensor data stream. This modular software structure allows

for relatively straightforward addition or removal of sensors.

Data from low-bandwidth sensors (e.g., current profiler) can be continually archived

without accruing unmanageable volumes of data. Data from high-bandwidth sensors (e.g.,

optical camera or multibeam sonar) are stored in variable-length ring buffers (typically 45-60

seconds) in the computer’s volatile memory. These ring buffers are written to disk when a

command is generated either by a user, on a fixed duty cycle (e.g., archive one minute of

data every two hours), or by an external real-time data processing module. Data archival

commands from real-time processing modules are received over UDP. The ring buffer struc-

ture serves three purposes: 1) when an archival command is generated, contextual data
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Figure 2.2: Renderings of the MSL-1 AMP. The AMP body is shown on the left, and AMP
on its docking station is shown on the right. Instruments labels are referenced to Table 2.1.
Renderings were created in SolidWorks (Dassault Systemes) by Paul Gibbs, University of
Washington Applied Physics Laboratory.

before the event is available, 2) any real-time processing codes do not need to operate in

true “real-time,” as long as they operate at the same rate as data acquisition, and 3) data

stored in memory can be used to establish background levels for target detection. Real-time

processing modules are configured for a specific monitoring application.

The AMP backbone has been integrated into multiple hardware packages. Two distinct

AMP systems were used to collect the data discussed in this thesis: the MSL-1 and MSL-2

AMPs. Both systems are named for their test site: the Pacific Northwest National Labo-

ratory Marine Sciences Laboratory (MSL). Renderings of the MSL-1 and MSL-2 platforms

can be found in Figure 2.2 and 2.3, respectively, and a comprehensive list of the sensors

integrated into each platform can be found in Table 2.1. An overview of both platforms

follows:

• MSL-1: The MSL-1 platform was the first version of the Adaptable Monitoring Pack-

age to be tested, and was first deployed 2017. All sensors were enclosed in a streamlined

shell to minimize forces on the system, and the system is cabled to shore via a docking
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Figure 2.3: Renderings of the MSL-2 AMP. A zoomed-in view of the instrument head is shown
on the left, and the entire platform as deployed is shown on the right. Instruments labels
are referenced to Table 2.1. Renderings were created in SolidWorks (Dassault Systemes) by
Paul Gibbs, University of Washington Applied Physics Laboratory.

station [55, 33]. Mechanical wipers (Zebra-Tech hydro-wipers) were used to prevent

biofouling on the optical cameras and artificial illumination. During the 2017 deploy-

ment, a real-time processing module that detected and tracked targets in the multibeam

sonar data was used to limit data acquisition to periods when targets were present.

This system was used to establish the capabilities of the AMP backbone, evaluate the

potential for third-generation development (see Chapter 3), and build a training data

set for machine-learning classification of targets in multibeam sonar data (see Chapter

4).

• MSL-2: The MSL-2 AMP incorporated significant hardware and software upgrades

from the MSL-1 AMP, and was first deployed in 2019. Major hardware upgrades

from the MSL-1 AMP include the addition of a pan motor to rotate the instrument

head and the addition or replacement of several sensors (see Table 2.1). The cross-

sectional profile of the MSL-2 AMP shell was greatly reduced through re-design of the

artificial illumination system, which removed the four struts that were used to separate

strobe lights on the MSL-1 AMP. In addition to the Zebra-Tech Hydro-Wipers used



11

on the MSL-1 AMP, ultraviolet lights (AML UVC LED Lights) were used to prevent

biofouling on the multibeam sonar and acoustic camera transducers. All active acoustic

instruments, with the exception of the fisheries echosounder, were synchronized using a

centralized hardware triggering system to prevent active acoustic crosstalk. During the

2019 deployment, a real-time processing module that classifies targets in the multibeam

sonar data was used to control data acquisition and automatic adaptive action (see

Chapter 4).
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Chapter 3

BENCHMARKING SENSOR FUSION CAPABILITIES OF AN
INTEGRATED INSTRUMENTATION SYSTEM

In this chapter, the feasibility of third generation integrated instrumentation is investi-

gated and the AMP is used to collect a training data set for machine learning classification

of targets in multibeam sonar data. The test described in this chapter was conducted using

the MSL-1 AMP, which is described in detail in Chapter 2. For simplicity, this platform is

referred to as “the AMP” throughout the chapter.

The contents of this chapter that follow were originally published in the International

Journal of Marine Energy in September, 2017:

E. Cotter, P. Murphy, and B. Polagye. Benchmarking sensor fusion capabilities of an inte-

grated instrumentation package. Int. J. Mar. Energy, 20:64−79, 2017.

This paper has been adapted for this thesis. The original publication includes a overview

of integrated instrumentation systems, which is discussed in Chapter 1 of this thesis, an

introduction to the AMP platform, which is discussed in Chapter 2 of this thesis, and a

preliminary analysis of machine-learning classification of target tracks, which is significantly

expanded upon in Chapter 4 of this thesis. To avoid redundancy, these sections have been

removed here. Additional minor edits have been made for consistency with the terminology

used in the rest of this thesis.

Paul Murphy led the evaluation of passive acoustic detection capabilities, with input from

the author. Because vocalizing marine mammals were rare at the Sequim, WA test site,

passive acoustic detection and classification are not investigated further in this dissertation.
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3.1 Introduction

In this chapter, the AMP is used to evaluate the benefits of third generation integration.

First, cooperative targets are used to benchmark individual sensor performance. Then, a

real-time module is implemented that triggers data acquisition when “opportunistic” targets

are detected and tracked in the multibeam sonar data streams. The effectiveness of this real-

time module is evaluated by comparing these data to data acquired on a sparse duty cycle.

Results confirm several of the hypothesized benefits of third generation integration, but also

demonstrate the challenges to achieving this. Throughout this chapter, the following terms

have specific meaning:

• Detection: the recognition of a target within the AMP field of view

• Classification: the assignment of a target to a particular class (e.g., diving bird)

• Identification: specific assignments within a class, potentially to the level of a species

(e.g., identifying a diving bird as a Cepphus Columba).

3.2 Methods

3.2.1 Deployment Site and Configuration

The AMP was deployed at the Pacific Northwest National Laboratory Marine Sciences Lab-

oratory in Sequim, WA from January to March 2017, with active acoustic and optical sensors

oriented in a cross-channel direction (Figure 3.1). Water depth at the deployment site varied

from 8-12 meters, depending on the stage of the tide, and peak currents were approximately

1.5 m/s. Harbor seals (Phoca vitulina) were commonly observed at the site. Historical trawls

indicate as many as fifty species of fish present in the vicinity of Sequim Bay, the most abun-

dant being Shiner Perch (Cymatogaster aggregate) (personal communication, Anna Kagley,

National Marine Fisheries Service). Diving birds (primarily pigeon guillemots, Cepphus

columba) were also commonly observed at the test site.
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Throughout the deployment, data were collected on a duty cycle: 45 seconds of acqui-

sition by the Kongsberg M3 multibeam sonar, Teledyne BlueView multibeam sonar, and

OceanSonics icListen hydrophones every 15 minutes, and 15 seconds of optical camera data

every 30 minutes (concurrent with other sensors). Strobe lights were only activated for 3

seconds during each data acquisition window to minimize potential for behavioral bias. In

addition, a real-time module was used to trigger data acquisition when a potential target

was automatically detected within 10 meter range of the AMP using the data streams from

the multibeam sonars, as described in Section 3.2.4. Targets in these data (e.g., marine

mammals, diving seabirds) are defined as opportunistic in the sense that their appearance

and position could not be controlled. Because vocalizing marine mammals are not common

in the area, opportunistic detection with the passive acoustic sensors was not possible.

3.2.2 Sensor Data Streams

Following acquisition by the LabVIEW core AMP software (see Chapter 2), data manipu-

lation were performed by a real-time processing module implemented in MATLAB (Math-

works), except where otherwise specifically noted. For the evaluation described in this chap-

ter, sensors and data acquisition were configured as described in the following sections.

Passive Acoustic Array

The four OceanSonics icListen HF hydrophones were connected through a pressure housing

containing an Ethernet switch, power distribution, and common electrical connection be-

tween the unit designated as the master and those designated as slaves for synchronization.

Data were acquired at 512,000 Hz, and stored in separate WAV files for each hydrophone.
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Figure 3.1: AMP Test site in Sequim, WA.
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Multibeam Sonars

The Kongsberg M3 (“M3”) multibeam sonar was operated in “Imaging” mode1, with a

15o vertical swath, 120o horizontal swath, and 50 meter horizontal range (see Figure 3.2).

The multibeam sonars were synchronized via a hardware trigger, with the M3 acting as the

“master.” The data were stored as flat text files in polar format with 0.94o beam spacing, 3

cm range resolution, and 32-bit intensity values with a minimum value of zero, and maximum

values on the order of 100.

The Teledyne BlueView (“BlueView”) M900-2250 multibeam sonar has two operating

frequencies: 900 and 2250 kHz. The 2250 kHz transducer was used to provide higher res-

olution imagery to a range of 10 meters. The BlueView has a 20o vertical swath and a

130o horizontal swath (see Figure 3.2). Data were stored as 8-bit PNG images in Cartesian

format, with a resolution of 2.5 cm/pixel and pixel intensity values ranging from 0-255. Five

radial lines are continually visible in the BlueView image (see Figure 3.3), and are considered

part of the image background. These lines result from the fact that the BlueView uses three

separate transducers to create a single image.

Wave and Current Profiler

The Nortek Signature 500 ADCP collected one minute of data at 1 Hz immediately after

data were acquired from the other sensors. The ADCP was configured to not collect data

concurrently with the other AMP instruments to avoid interference with the M3, which also

operated at 500 kHz (the ADCP does not have a hardware trigger when equipped with

Ethernet communications) [13]. Data were reported with 0.5 meter bin sizes ranging from

0.5 meter above the instrument to the water surface.

1The “Enhanced Image Quality (EIQ)” mode (which provides higher image quality with a slower acqui-
sition rate) was not utilized, due to measurements indicating that this mode produced the most sound
within the range of marine mammal hearing [13].
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Figure 3.2: Fields of view for the two multibeam sonars, the Kongsberg M3 and the Teledyne
BlueView. Top panel shows top view, and bottom panel shows side view.

Optical Camera

The camera system consisted of two Allied Vision G-304 Manta cameras and four Excelitas

MVS-5000 strobe lights. Mechanical wipers (Zebra-Tech Hydro-Wipers) were used to prevent

biofouling on optical ports during a deployment [34]. One optical camera was configured as

master, and was used to trigger synchronous acquisition from the second camera with an

overlapping field of view. Camera exposure was allowed to automatically adjust based on

the available ambient light since this varied in time due to the relatively shallow water depth

and fluctuations in turbidity. Data were stored as 16-bit greyscale PNG images.
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3.2.3 Benchmarking of Sensor Capabilities

A variety of cooperative targets with known location and passive or active acoustic signatures

were used to benchmark sensor detection capabilities and range. First, 14 cm diameter fishing

floats were used as targets for the active acoustic instruments, which provided an acoustic

return approximately equivalent to a medium sized swim-bladdered fish, such as a 14-16

cm Pacific Hake (personal communication, John Horne, University of Washington School

of Aquatic and Fishery Sciences). These targets were suspended from a surface buoy and

allowed to drift with currents through the field of view of both active acoustic sensors. These

tests were also helpful to verify the AMP orientation on the seabed by comparing the target

position in the multibeam sonar data with GPS estimates of surface buoy position [10].

Second, in a coarse approximation of a pinniped, a diver equipped with a rebreather (to

minimize air bubbles) swam to a variety of predetermined distances and depths within the

field of view.

To evaluate the detection capabilities of the hydrophone array, acoustic sources emitted

sound at a variety of frequencies and ranges from the AMP. An OceanSonics icTalk HF

acoustic projector was configured to produce narrow-band tones at seven frequencies (Table

3.1). Tones were one second in duration at each frequency and were separated by one second

pauses. An additional six second pause was inserted at the end of the sequence resulting

in a total sequence duration of 20 seconds, which was then repeated continuously. These

tones were chosen to represent potential marine mammal vocalizations, such as whistles,

that might be present at marine energy sites. Source levels were taken from manufacturer

calibrations.

The acoustic projector was mounted at a depth of approximately 1 meter beneath a

surface vessel, which was maneuvered to a range of up to one kilometer from the AMP

to assess the upper limits of detectability as a function of range, source frequency, and

hydrophone position on the AMP. A GPS logger (QStarz BT-Q10000eX) recorded vessel

position.
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Frequency

(kHz)

Source Level

(dB re 1 µPa)

10 126

20 140

40 143

60 145

80 144

100 144

120 145

Table 3.1: Acoustic projector source frequencies and levels. Source levels based on band-
widths of 6 Hz.

Hydrophone data were processed using the “Whistle and Moan” detector available in

PAMGuard2 to determine when, if ever, each tone was detected by each of the four AMP

hydrophones. GPS data were linearly interpolated to determine the approximate vessel

position at the time each sound was detected. Position estimates were slightly adjusted to

account for transmission time assuming a direct path from source to receiver and uniform

sound speed of 1500 m/s.

3.2.4 Target Detection And Tracking

Target detection and tracking were implemented for the multibeam sonar data streams. The

same scheme was implemented in a real-time module and applied in post-processing. Target

detection involves the discrimination of “targets” (objects in the foreground) from the image

background. The foreground for each image was found by subtracting the median value for

each pixel in a window preceding that frame. A 10 second window was used for the M3,

2PAMGuard is an open-source passive acoustic detection and classification software package
(https://www.pamguard.org/).
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and a 30 second window was used for the BlueView. Because the M3 images were higher

bandwidth, computational limitations necessitated a shorter window to conduct background

subtraction at the same speed as data acquisition.

A two-dimensional median filter was applied to each foreground frame to reduce noise in

the image. Next, an intensity threshold was applied to each frame to create a binary image.

For the M3, this threshold was varied with distance from the AMP from 1.5 to 3 (arbitrary

units), such that sensitivity was higher at closest range, and decreased as noise became more

prominent at greater range. A constant threshold of 20 (arbitrary units) was used to produce

a binary image from the BlueView data. Any targets with overlapping bounding boxes were

then merged to create a single target3. Objects in the binary foreground image larger than

a threshold value (0.0125 m2 and 0.06 m2 on the BlueView and M3 data, respectively) were

classified as candidate targets. These thresholds were selected based on the characteristics

of targets identified through human review of acquired data.

A Kalman filter [41] was employed to track candidate targets based on the position of

their centroid, under the assumption that true targets moved with constant velocity between

each frame of data. This is reasonable, given that frames were acquired at an interval

of 0.2 seconds by both sonars. The polar format M3 data were transformed to Cartesian

coordinates, so that a linear Kalman filter could be used. An attempt was made to match

each candidate target with an existing track by comparing detections in each frame with

the locations of candidate targets predicted by the Kalman filter. Targets with centroid

positions within 0.25 or 1.5 meters of the predicted location of a track (for the BlueView and

M3 data, respectively) were associated with that track. In the case that there were multiple

targets within this range, the closest target was used. Candidate targets that were not

detected across at least five frames were discarded. A target track was declared to end after

a specified time without a detection (0.3 or 1 seconds on the BlueView and M3, respectively).

Like the detection thresholds, these values were determined by human review.

3This feature was only implemented in post-processing.
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3.2.5 Triggered Data Acquisition

The target detection scheme described in the previous section was implemented in real-time

to trigger data acquisition when sufficiently large and intense targets were present in the

sonar field of view. Background subtraction was conducted in the core AMP software in

LabVIEW, using the data already stored in ring buffers to calculate the image background.

After background subtraction, foreground images were stored as temporary files and read se-

quentially by the MATLAB real-time module for target tracking. For testing and evaluation

purposes, real-time target tracking was only conducted for targets within the first 10 meters

of the M3 image (overlap with the BlueView image). A data acquisition trigger was relayed

to the core AMP software over UDP whenever a target track longer than five frames (one

second) with a 75th percentile target area and mean intensity above predetermined thresholds

was detected on either sonar. The core AMP software then triggered activation of strobe

lights to illuminate any targets within the optical camera field of view for 3 seconds, and

waited an additional 15 seconds to trigger data offload from all sensors. This ensured that

the entire event was captured in the ring buffers. After a trigger was generated, a second

trigger was not generated until at least one ring-buffer length (45 seconds) had elapsed to

avoid overlap in the data, but still allow an event which lasted longer than 15 seconds to be

recorded. 75th percentile target area thresholds of 0.2 m2 and 0.3 m2, and mean intensity

thresholds of 40 and 2, were used for the BlueView and M3 imagery, respectively. These

thresholds were tuned to capture most diving seabirds, fish schools, and seals with an accept-

able number of false detections, but were too high to detect individual fish or targets of other

classes at certain orientations. Because the primary objective of real-time detection during

this deployment was to obtain a sufficient number of target samples to train classification

algorithms, this trade-off was deemed acceptable. The size, position, and average intensity

of all detected targets were logged for later analysis.

The features used for automatic target detection (average target intensity and 75th per-

4Sunrise/sunset times did not vary significantly over the eleven-day review period.
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Feature(s) Units
Normalization

Limits (min,max)
Description

A75,

A50,

Amean,

Amax,

Astd

m2

A75: (0,0.5),

A50: (0,0.5),

Amean: (0,0.5),

Amax: (0,0.75)

Astd: (0, 0.25)

the 75th percentile (A75), 50th percentile (A50),

mean (Amean), maximum (Amax) and standard

deviation (Astd) of target area for all

targets associated with a track

I75,

I50,

Imean,

Imax,

Istd

Arbitrary

I75: (0,150),

I50: (0,150),

Imean: (0,150),

Imax: (0,255)

Istd: (0, 75)

the 75th percentile (I75), 50th percentile (I50),

mean (Imean), maximum (Imax) and

standard deviation (Istd) of intensity of

targets associated with a track

Maj75 m (0,1.1)
the 75th percentile major axis

length for each target associated with a track

Min75 m (0,1.1)
the 75th percentile major axis

length for each target associated with a track

AR m (0,1)
the mean ratio of major and minor axis length for each

target associated with a track

D
Number

of frames
(5,30)

the duration of each track, represented as the

number of frames in which it was detected

R m (0.2,10) the mean range from the transducer for each track, in m

S m/s (0,1)

the average speed of the target in each track,

calculated using an average of the velocity between

every 4 target detections associated with a track

N50,

N90

Number

of targets

N50: (0,5),

N90: (0,5)

the 50th (N50) and 90th (N90) percentile of the number of

other tracked targets within a two-meter range of each target

dS m/s (-1,1)
the difference between the average track speed (S)

and the current speed at the time of detection

C m/s (0,1.5) the current speed (in m/s) at the time of target detection

T hours (0,12)

the time of target detection in absolute hours relative to

midnight in local time (i.e., both 11:00 PM and

1:00 AM have a value of 1)4.

Table 3.2: Features calculated for each target track
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centile target area) were not sufficient to automatically classify targets. Therefore, a broader

set of track features was developed to assess the feasibility of automatic classification in

post-processing. These features are as summarized in Table 3.2.

3.2.6 Human Review and Classification

Human review was conducted for data acquired over an eleven-day period during which

sensor settings and thresholds were held constant. Prior to this point in the deployment,

automatic detection thresholds and processing codes were regularly adjusted to improve

effectiveness. Human review was only conducted for the BlueView data, because the higher

resolution allowed more accurate human classification of targets. The reviewer watched each

recorded sequence with the results of the target detection and tracking algorithm overlaid,

then classified each target track as a “seal”, “school of fish”, “diving bird”, “bubble clouds”,

“false detection”, or “other/unknown”. “False detection” was used to classify any target

track which was not a real target (e.g., high intensity regions resulting from high turbidity

in the water or interference from other sensors). “Other/unknown” was reserved for targets

that were obviously not a false detection, but also could not be classified with any confidence.

Reflections resulting from high-intensity targets (i.e., high intensity regions appearing near a

detected target that were not a part of the target itself, but artifacts of the sensor processing)

were also classified as other. In addition to classifying each track, the reviewer indicated if

there were any targets present which were not tracked and if there was an object obscuring

the sonar field of view (e.g., a crab occluding the BlueView transducer). For all triggered

data sequences, optical camera data were also reviewed and used to validate target track

classification, when possible.

These results were used to benchmark the effectiveness of the detection algorithm. Data

acquired on a duty cycle were used to estimate the false negative rate for the detection and

tracking scheme (percentage of duty cycle data which contained targets for which a trigger

was not generated), and the triggered acquisition data were used to determine the false

positive rate (percentage of triggered data acquisition sequences which contained no clear
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targets). In the event that a trigger was generated during a duty cycle acquisition, the event

was considered to be a triggered acquisition, meaning that the remaining duty-cycle data set

was a sparse representation of the negative case (periods when no trigger was generated). As

discussed in Section 3.3.4, the chosen duty cycle captured relatively few targets of interest.

3.2.7 Duty Cycle Simulation

To evaluate the advantages of triggered data acquisition (third generation integration) over

a fixed duty cycle (second generation integration), a series of duty cycles were simulated

to determine what percentage of human-classified true targets could be captured without

triggering. For each simulated duty cycle, a 45 second data acquisition window was used

and the time interval between acquisition events was varied. For example, a 2.5% duty cycle

acquired 45 seconds of data every 30 minutes. Each cycle (1-100%) was simulated 500 times

with a randomly selected starting point within the first cycle period of the test period (i.e.,

a 2.5% duty cycle could start anywhere between 12:00 to 12:30 AM on the first day of the

review period). A target track was considered to be “detected” if at least one second was

contained within the duty cycle window (i.e., a human reviewer would be likely to correctly

classify the target with this information). For each simulated duty cycle, the detection rate

(percentage of all targets of interest in the automatically triggered acquisitions which would

have been detected if operating on a duty cycle) and resulting data mortgage (volume of

collected data containing no true targets) were calculated.

3.3 Results

3.3.1 AMP System Reliability

The AMP was fully operational for 94% of the 76-day deployment. The majority of system

downtime is attributable to three causes: scheduled downtime for software upgrades (13%

of downtime, or <1% of total test time), power outages at the test site (31% of downtime,

or 2% of total test time), and software crashes, mainly related to transfer of data to long-
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term storage (55% of downtime, or 3% of total test time). This indicates that integrated

instrumentation systems should be able to perform with similar reliability to individual

sensors.

3.3.2 Benchmarking of Sensor Capabilities

Within the range of the BlueView (10 meters), the drifting floats were used to compare

appearance of the target and detection capabilities for the two sonars. Figure 3.3 shows two

snapshots from the float drifting past the AMP. In case 1 (top), the target is clearly visible at

the same location on both instruments. However, in the M3 image, the target appears larger

and distorted (i.e., not circular, and larger than it appears in the BlueView image). In case

2 (bottom), the target is not visible as it passes through the intersection of the BlueView

transducers, but is clearly visible in the M3 image.

The drifting float could not be used to assess the effective range of the M3 for two rea-

sons: it was difficult to maneuver the float to the correct position, and, after the beam

swath intersected the water surface, it was not possible to distinguish between the surface

expression and the sub-surface target. Human divers proved a more effective cooperative

target for determining the effective range of the sonar because they could easily maneuver

to predetermined locations without any surface expression. Figure 3.4 shows detection of

the same diver at approximately 5 meters (left) and 25 meters (right) range from the trans-

ducer. As expected, the target is clear at close range but is difficult to distinguish from the

background at a range of 25 meters. The maximum intensity value of the intensified area

resulting from the diver is 64 (arbitrary units) at a range of 5 meters and 13 at a range of 25

meters. Because the diver and oxygen tank represent a larger and more intense target than

any fish or marine mammal present at the test site, target detection beyond a range of 25

meters would not likely be possible for the M3 data at this site.

Passive acoustic detection rates varied significantly as a function of range and source

frequency (three examples are shown in Figure 3.5). Detection rates and ranges were similar

at 20, 40, 60, 80, and 100 kHz. Within the fields-of-view of the active acoustic sensors,
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Figure 3.3: Two cases of simultaneous visualization of a fishing float by the BlueView (left)
and M3 (right). In case 1 (top), the float is clearly visible at the same location on both
sensors. In case 2 (bottom), the float is masked in the BlueView data. A 1x1 meter area
around the float is magnified at the same position for both cases.
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Figure 3.5: Passive acoustic detections for three frequencies produced by the acoustic pro-
jector (10, 60, and 120 kHz). “Full detection” indicates that all four AMP hydrophones
detected the tone, and “partial detection” indicates that some, but not all, hydrophones
detected the tone.

detection was reliable for all tested tones. The 10 kHz tone was more challenging to detect

as a consequence of its relatively lower source level (Table 3.1) and relatively higher ambient

noise levels. Poor detection of the 120 kHz tone may be a result of the relatively higher

attenuation of sound by absorption at higher frequencies.

3.3.3 Target Detection and Tracking

During the human review period (eleven days), 989 duty cycle sequences and 479 triggered

sequences were acquired. Figure 3.6 shows the distribution of targets for a representative

day of reviewed data superimposed on the tidal current. Several trends are evident, which

were consistent throughout the reviewed data: detections of all targets were most common

during slack or near-slack tides, detections of diving birds were limited to daylight hours,
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Figure 3.6: Distribution of triggered data offload events for a representative day of data,
superimposed on the tidal current speed measured 1 meter above the AMP. Several trends
can be observed which were consistent through all reviewed data: detections of birds are
limited to daylight hours, detections of seals are limited to nighttime hours, and nearly all
detections are during slack or near-slack tidal conditions.

and detections of seals were limited to nighttime hours. Figure 3.7 shows the probability

distribution for a representative selection of the track features detailed in Table 3.2 for each

target class.

Table 3.3 shows the distribution of target classes for which a trigger was generated, as well

as the percentage of triggers generated by each sonar. Targets were considered to be“co-

registered” if target tracks on both sonar exceeded trigger thresholds within five seconds

of the generated trigger, because multiple triggers were not generated for targets detected

within a single 45 second time window. 58% of triggered data offloads were triggered by a

“real” target (seal, bird, kelp, cloud of bubbles, fish school, or other/unknown). Of the 42%

of triggered data events that were caused by false targets, 45% were the result of an object

(likely a piece of kelp or a crab) occluding the BlueView transducer for an extended period.

Human review determined that the automatic detection algorithm missed nine targets of

interest in the duty cycle data (i.e., 1% of duty cycle sequences contained a target of interest).

A discussion of the characteristics of each class of target track follows.
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Figure 3.7: Probability distribution for a subset of track features: 75th percentile intensity
(I75), 75th percentile target area (A75), 75th percentile major axis length (Maj75), track
duration (D), mean track range (R), 90th percentile of targets within a range of 2 meters
(N90), difference in speed relative to tidal current (dS), and time of day (T ).
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Target type
Number

of triggers

%

of total

%

co-registered

% detected

only in

acoustic

camera data

% detected

only in

multibeam

sonar data

Seal 95 20% 13% 49% 13%

Bird 66 14% 2% 30% 64%

Kelp/Seagrass 52 11% 2% 50% 35%

Bubbles 42 9% 0% 95% 0%

Fish School 11 2% 0% 91% 0%

Other/Unknown 14 3% 7% 21% 50%

False Detection 199 42% <1% 86% 1%

Total 479 100%

Table 3.3: Breakdown of target classes in triggered data acquisition

Seals

Seals were responsible for the most automatic triggers, and were characterized as being

relatively large and having a high intensity. When seals were detected swimming horizontally

through the field of view, they presented as long, elliptical targets, and the hind flippers were

often clearly distinguishable in BlueView imagery. When a seal was diving through the field

of view vertically, it presented as a smaller target. Because seals passed through the field of

view from many angles, the size of targets is broadly distributed (A75 in Figure 3.7). Seals

were typically moving faster than the current speeds (dS), and not detected concurrently

with a large number of other targets (N90). All detections of seals were at slack or near-

slack tide and during night-time hours. Most detections of seals were in the BlueView data,

though in some cases seals appeared as more intense targets in the M3 data.
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Birds

Diving birds were also responsible for a relatively large number of automatic triggers. Birds

produced smaller targets than seals (A75), but with similar intensity (I75). Because of their

diving trajectory, most birds were detected with minimal motion in the horizontal plane.

However, on several occasions, birds were observed to swim horizontally, possibly while

foraging. Based on optical camera data, birds were detected while diving and resurfacing,

though it was not possible to distinguish between these two trajectories using the BlueView

data. All detections of birds were at slack or near-slack tide and during day-time hours. A

larger number of both birds and seals were detected at longer range from the instrument,

because the conical shape of the BlueView swath ensonified a larger area at longer range

(higher probability of a target being present in the sonar field of view). Most detections of

birds were in the M3 data, because birds presented as larger and more intense targets in the

M3 data relative to the BlueView data (similar to the cooperative target in Figure 3.3, case

1).

Bubbles

Clouds of bubbles were frequently detected and likely originate from a diving bird or seal

(in both cases, air entrained from the surface during a dive). In many cases, a cloud of

bubbles was detected when there was no other target observed, likely because a bird or seal

was diving outside of the field of view. When many small bubbles presented acoustically

as a single large target, they were sufficient to trigger data offload. However, they were

not commonly detected beyond a range of approximately 5 meters due to reduced intensity

caused by beam spreading (see distribution of R in Figure 3.7). Bubbles were most commonly

detected during day-time hours (likely resulting from diving birds), but occasionally detected

during night time hours (likely resulting from diving seals). In cases where a diving bird and

the resulting cloud of bubbles were detected as a single track, the entire track was classified

as a bird. Triggered events containing bubbles were exclusively generated by the BlueView
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data, because the small size of bubbles made them appear as lower intensity (or not visible)

targets in the lower resolution M3 data.

Kelp and Eelgrass

The appearance of kelp and eelgrass varied depending on the range and size of the target.

Single pieces of kelp or eelgrass floating vertically in the water column at close range pro-

duced high-intensity targets in the data from both multibeam sonars. It should be noted

that in cases without optical verification, human reviewers may have misclassified some of

these targets as small individual fish. Detections of large pieces of kelp were typically lower

intensity, but had a larger target area. Large pieces of kelp could be distinguished from seals

by their slower velocity (dS) and variable shape as they moved with the currents.

Fish Schools

Fish schools were not common in triggered data sequences. Typically, triggers originated

from a portion of the fish school detected as a single, large target, which was above area and

intensity thresholds, and individual fish on the edges of the school were detected as multiple,

smaller targets. All fish that were visually associated with the school were classified as a

part of the school during human review. When multiple target tracks were associated with

a fish school, they produced a longer tail in the N90 track feature, relative to other target

classes (Figure 3.7). Fish schools were observed to scatter after activation of strobe lights,

and were detected during both night time and day time hours. All fish school triggers were

generated from the BlueView data.

False Positives (False Targets)

Three classes of false targets were identified: targets resulting from organic debris in the water

column (typically at close range), targets resulting from electrical interference produced

by the strobe lights (typically around a range of 8 meters, and too small to generate a
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trigger), and targets resulting from an object occluding the sonar transducers (typically

observed within a range of 5 meters). These false detections occurred almost exclusively

in the BlueView data, because the higher resolution and smaller minimum area threshold

allowed for detections of clouds of organic debris in the water. Additionally, the open nose-

cone of the BlueView allowed objects to intermittently snarl on the transducer.

Missed Targets

Three types of false negatives were identified. The first occurred when a target was only

partially ensonified (i.e., not entirely contained within the instrument swath), producing

an atypically low intensity. The second occurred when schools of fish were not aggregated

closely enough to be detected as a single target, and were detected as individual fish, with

no target large enough to generate a trigger. The third case occurred when a target was not

effectively tracked, either due to an error with the target tracking code (i.e., tracking lagged

behind data acquisition and did not process every ping) or rapid changes in target direction

inconsistent with the fundamental assumption of the Kalman filter.

3.3.4 Duty Cycle Simulation

Figure 3.8 shows the results of duty cycle simulation for cycles ranging from 1-100%. The

presented detection rate includes all classes of true targets (seals, birds, bubble clouds, fish

schools, and pieces of kelp/seagrass). Detection rates varied with the starting time for

each cycle, so the standard deviation (darker grey) and maximum/minimum (lighter grey)

detection rate calculated for each cycle are indicated.

As an example, the 5% duty cycle used during this deployment (45 seconds of data

every 15 minutes) would be expected to capture, on average, 6% of targets of interest in

triggered sequences, with minimum and maximum values of 3% and 9%, respectively. This

cycle would be expected to accrue 170 GB of empty data each day, and, on average, 1.6% of

sequences would contain a target of interest. For comparison, triggered data acquisition with
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Figure 3.8: Mean detection rate for all simulated data cycles, with standard deviation (dark
grey) and maximum/minimum (light grey) values indicated. The resulting data mortgage for
each cycle (volume of data containing no useful targets) is indicated in blue. The detection
rate does not exactly reach 100% for a 100% cycle: this is an artifact of simulation resulting
from targets with a persistence of approximately one second that were split between adjacent
“windows” and, therefore, not counted in either.

a 58% true positive rate accrued, on average, 28 GB/day of empty data, while capturing an

estimated 99% of targets.

3.4 Discussion

3.4.1 Effectiveness of Cooperative Targets

While cooperative targets were critical for assessing sensor functionality and range, they were

not used to train active acoustic automatic detection algorithms because the cooperative

targets did not provide a sufficiently accurate representation of the real targets present at

the site (e.g., seals, birds). Similarly, cooperative targets would likely not be effective for

quantifying true positive of false negative rates for automatic classification algorithms. For

passive acoustic monitoring, cooperative targets were essential in assessing target detection
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capabilities, because the expected targets (fish tags and marine mammal vocalizations) could

be more easily mimicked and these targets were not naturally present at the test site.

3.4.2 Quantifying System Effectiveness

This study quantified true positive and false negative rates for a real-time module that

acquired data whenever a target of sufficient size and intensity was detected and tracked.

This helped in interpreting the statistical significance of observations made around marine

energy projects. However, there will be a large uncertainty in estimates of false negative

rates unless 100% of data are collected and reviewed, which is not feasible for almost any

integrated system. Calculation of true positive rates is more straightforward, because only

data identified by automatic detection and/or classification algorithms must be reviewed to

quantify effectiveness. This asymmetric effort mismatch is analogous to the philosophical

difficulty of proving a negative to retire certain environmental risks.

3.4.3 Third Generation System Feasibility and Benefits

Results from the AMP endurance test demonstrate the feasibility and advantages of third

generation integrated instrumentation. First, human classification of targets benefited from

multiple, synchronous data streams. Specifically, optical camera data were often critical in

interpreting the sonar data. Figure 3.9 shows detections of a small fish and a diving seal

within 1 meter of the AMP. The targets appear similar in size and intensity in the BlueView

data, and would likely not have been correctly classified without concurrent acquisition of

the optical camera data. Similarly, clouds of bubbles were initially misclassified during

human review as schools of fish or unknown targets before bubbles were observed on the

optical camera. In addition, because simulated marine mammal vocalizations were detectable

within the range of the sonar, it is expected that passive acoustic data would improve target

classification or species-level identification at sites where vocalizing marine mammals are

present.
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Figure 3.9: Comparison of a small fish (top) and diving seal (bottom) detected a range of
approximately 1 meter. A 1x1 meter area around the target is magnified for both cases.
Without optical camera data, the targets are difficult to distinguish at this range.

Second, real-time target detection in sonar data streams enabled the collection of a data

set that can be used to train automatic classification algorithms. Based on the simulated duty

cycle analysis, data collection on a 5% duty cycle would only have been expected to generate

6% of the target-containing sequences that were acquired using triggered acquisition. This

reduced training data set would likely not have been sufficient to train classifiers with the

performance demonstrated here. Further, human reviewers would have been required to sift

through a large volume of empty data to detect and classify the targets.

The features described in Table 3.2 were descriptive of the characteristics of the ob-

served target classes, as shown in Figure 3.7. However, classification of target tracks using

manually-tuned thresholds using these features would be highly subjective and likely achieve

relatively low true positive rates. This motivates the application of machine learning to the

classification task.

Overall, automatic detection, followed by human classification, enabled intuitive repre-

sentation of biological trends at a marine energy site (e.g., Figure 3.6). This can allow
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regulators to more rapidly evaluate risk (e.g., are seals likely to be present during periods

of strong tidal currents when collision with a turbine would be most severe?) or identify

trends over time (e.g., are fish schools more prevalent as an artificial reef forms around a

WEC foundation?). Additionally, automatic classification of detected targets could further

streamline the process of extracting biological insight from these data streams in the future.

Such insight generally requires third generation integration, as first generation systems are

inefficient at collecting the synchronous data streams necessary for human classification of

training data and second generation systems are likely to produce an unmanageable data

mortgage in pursuit of training data for automatic post-processing. Consequently, third

generation integration is likely necessary to automate monitoring programs that can cost-

effectively address perennial challenges to marine energy development, such as the risk of

collision. However, all third generation systems may not physically resemble the AMP dis-

cussed in this study. For example, a third generation system could consist of multiple sensor

nodes distributed around a marine energy project and networked back to a single control

and classification system.

3.5 Conclusions

The initial deployment of the Adaptable Monitoring Package demonstrated many benefits of

third generation integrated instrumentation packages for environmental monitoring at marine

renewable energy sites. Triggered data acquisition is shown to substantially improve the

probability of detecting rare targets while decreasing the volume of low-value data. This has

the potential to reverse the “DRIP” (data-rich, information-poor) paradigm in marine energy

environmental monitoring by simultaneously reducing data volumes and reliably detecting

important events [66]. In addition, it was demonstrated real-time target detection and

tracking can be used to limit the use of sensors that might bias animal behavior. This

suggests third generation systems like the AMP can satisfy all three directives for effective

marine energy environmental monitoring.
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Chapter 4

AUTOMATIC CLASSIFICATION OF FAUNA IN A TIDAL
CHANNEL USING A MULTIBEAM SONAR

In Chapter 3, the benefits and capabilities of a third-generation integration instrumenta-

tion system were demonstrated and a real-time module that detected and tracked targets in

multibeam sonar data was used to collect a training data set suitable for machine learning

classification. In this chapter, that training data set is used to develop automatic classifica-

tion of targets in multibeam sonar data. Automatic classification is then implemented in a

real-time processing module and used to control sensors and data acquisition, furthering the

third generation capabilities developed in Chapter 3.

Three subsets of training data are referred to in this chapter: 2017, 2019a, and 2019b.

The 2017 data set refers to the data described in Chapter 3, which was collected using the

MSL-1 AMP. The 2019a and 2019b data sets are first introduced in this chapter, and were

collected using the MSL-2 AMP.

The contents of this chapter that follow were are currently under review for publication

by the Journal of Atmospheric and Oceanic Technology :

E. Cotter and B. Polagye. Automatic Classification of Biological Targets in a Tidal Chan-

nel using a Multibeam Sonar. Submitted to the Journal of Atmospheric and Oceanic

Technology. 2019.

Portions of the introduction have been removed to avoid redundancy with Chapter 1, and

minor edits have been made for consistency with the rest of this thesis. Most notably, the

discussion of the real-time implementation of automatic classification has been restructured

using the terminology in Chapter 2.
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4.1 Introduction

In Chapter 3, target size and intensity thresholds were used predict the presence of po-

tential targets of interest in multibeam sonar data. Previous approaches for processing of

multibeam sonar data at marine renewable energy sites have generally used similar methods,

though target presence had not previously been used to control an instrumentation platform

in real-time. In [67], a multibeam sonar was used to monitor a tidal turbine structure. Data

were continually recorded for a period of two weeks, and targets in the data set were auto-

matically tracked in post-processing using a nearest-neighbor algorithm. These target tracks

were parameterized by morphometric measurements (e.g., size, intensity) and behavior (e.g.,

velocity, direction of travel) to aid in manual classification. Similarly, in [32], targets were

detected and tracked using a nearest-neighbors approach, then classified based on manually-

tuned target size thresholds. In addition, targets moving with a constant velocity were

ignored under the assumption that they were passive objects advected by tidal currents. In

[38], targets were automatically tracked in post-processing using a Kalman filter, and these

target tracks were used to limit human review to periods when targets were present. [21]

proposed a simple method for classifying targets in multibeam sonar imagery collected at a

wave energy test site based on the length of a detected target in a single sonar image. Target

length thresholds were used as the sole parameter to distinguish between marine mammal

species (e.g., grey seals and harbor seals), but the accuracy of the method was not evaluated

(e.g., true positive or false negative rates). Additionally, all targets were assumed to be

fish or marine mammals, and the presence of non-biological targets that might have similar

appearance in multibeam sonar data (e.g., kelp) [12] was not explicitly considered.

However, because the size, shape, and intensity of targets in multibeam sonar data vary

with their position and orientation relative to the sonar [21], manually-tuned thresholds

are subjective and unlikely to be sufficient for automatic classification. A more objective

alternative is target classification using machine learning. While the author is unaware of

any prior application of machine learning to classification of fauna in multibeam sonar data,
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multiple data sets collected at marine energy sites have been proposed as training data for

future machine learning models [67, 38]. Machine learning has also been applied to similar

multibeam sonar classification problems. For example, in [16], a two-layer neural network

was used to classify naval mines in multibeam sonar data using hand-engineered features that

described the size and intensity of detected targets. The neural network was trained using

the subset of features that resulted in an optimal classification rate and was able to classify

mines with the same probability as an expert human reviewer. Machine learning has also

been applied to multibeam sonar data for benthic habitat mapping. In both [26] and [30],

it was found that a model using a random forest algorithm could classify seafloor substrates

and biota (e.g., algae) with greater than 80% accuracy using hand-engineered features that

described the intensity and texture of the image. In addition, machine learning has been used

for automatic classification of birds in radar data collected at wind energy sites [53]. Radar

imagery is similar to multibeam sonar in that it can be used to detect targets at longer ranges

than optical cameras and does not require light, but the images are relatively low resolution.

In [53], six machine learning algorithms were evaluated for classification of target tracks in

radar data. A random forest algorithm performed best, achieving true positive rates over

90% for discrimination between bird and non-bird targets, and true positive rates between

81 and 83% for discrimination between specific groups of birds (e.g., herons and swallows).

The classification models were, however, likely site-specific, as they were trained using data

from only one site.

In this chapter, three machine learning algorithms are evaluated for automatic classifica-

tion of marine fauna in multibeam sonar data. Manually reviewed target tracks (described in

detail in Chapter 3) serve as training data, and two feature selection methods are evaluated

for improvements to classification model performance. Classification models are evaluated

using relevant metrics for environmental monitoring applications. Following this, classifi-

cation performance is evaluated with varying volumes of training data to understand the

requirements for adding new classes of target tracks to an existing model. Finally, classi-

fication is implemented in real-time at a tidal energy test site. Real-time performance is
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presented and informs recommendations for implementation at new marine energy sites.

4.2 Classification Algorithms

There are a wide variety of machine learning algorithms for automatic classification. For

our application of classifying fauna at a marine energy site, an algorithm must satisfy three

requirements. First, the algorithm must be able to discriminate between more than two types

of classes (multi-class). Multi-class classification can, however, be achieved for a binary (i.e.,

limited to two classes) classification algorithm using a combination of classification models

specific to each class [17]. Second, the algorithm must perform well with a relatively small

training data set, because some targets of interest (e.g., marine mammals) are relatively rare

and annotation of training data is time intensive. Third, the algorithm must be able to

predict the classification of a new target track relatively quickly to be suitable for real-time

classification. Based on these requirements and prior investigations, three supervised machine

learning algorithms were selected for evaluation: k-nearest neighbors, random forests, and

support vector machines. Advantages and disadvantages of each algorithm, as they pertain

to our application, are summarized in the proceeding sections.

4.2.1 k-Nearest Neighbors

A nearest neighbors algorithm is the simplest method of automatic classification. An un-

known sample is assigned the class of the closest sample in the training data set: its “nearest

neighbor”. K-nearest neighbors expands on this approach by taking a “vote” of the k near-

est neighbors, where k is a user-specified integer. These “votes” can be weighted by the

distance of each neighbor from the unknown sample, making the algorithm relatively robust

to outliers in the training data [18]. However, this algorithm can be sensitive to the value

of the parameter k [70], and the computational requirement for classification of a new sam-

ple increases with the size of the training data and the value of k. A k-nearest neighbors

algorithm can be used for classification of any number of classes.
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4.2.2 Support Vector Machines

The support vector machine algorithm finds the hyperplane that best divides a data set

into two classes [7]. A hyperplane is an n-dimensional division of the data set, where n is

the number of features describing each point in the data set. For example, when n = 2,

the hyperplane is the line that best divides the data into two classes (each class is on one

side of the line). The support vector machine algorithm is a kernel method, meaning that

it uses a kernel function to map data into a higher-dimension feature space to find the

optimal hyperplane when a linear separation would not perform well [7]. While they have

moderate computational requirements for training, support vector machines can classify a

new data point with low computational cost. Support vector machines are inherently binary

classification models, though there are several methods in the literature for achieving multi-

class classification [17].

4.2.3 Random Forests

A random forest is comprised of multiple decision trees, a classification method that divides

data into a set of “nodes,” or decision points [5]. Single decision trees can perform well for

classification, but are prone to over-fitting (i.e., producing a model that is too specific to the

training data and performs poorly for data that was not contained in the training data set).

However, when many decision trees are combined in a random forest, the method is more

robust. Random forests have been shown to perform well with small training data sets [3],

and can be used for any number of classes.

4.3 Methods

4.3.1 Training Data

The manually reviewed multibeam sonar target tracks described in Chapter 3 were used

as training data to evaluate classification models in post-processing. Salient details of the

data collection and human review are repeated here. Data were collected using the Teledyne
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Figure 4.1: Sequim Bay test site. The deployment sites where the 2017 and 2019 data sets
were collected are indicated.

BlueView M900-2250 multibeam sonar (2250 kHz) integrated into the Adaptable Monitoring

Package. The multibeam sonar was positioned to look across a narrow tidal channel in

Sequim Bay, WA (see Figure 4.1). At the deployment location, the water was approximately

10 meters deep and experienced peak tidal currents around 1.5 m/s. Targets were detected

in the foreground of each multibeam sonar image and tracked using a Kalman filter. Target

tracks were then classified by a human reviewer (the corresponding author of this study).

Here, these targets are separated into five classes: non-biological targets (N ), seals (S ),

diving birds (B), fish schools (F ), and “small targets” (Sm). The latter class consisted

of drifting kelp/eelgrass or individual fish which could not be reliably differentiated due

to sonar resolution. The non-biological target class includes all target tracks that were

not associated with plants or animals: sonar artifacts (e.g., from side lobes of the transducer

[63]), bubbles, and turbulent backscatter. Reviewer annotations were verified with concurrent
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Class Abbv.
Number of Tracks

2017 2019a 2019b

Non-biological N 2631 947 1988

Seals S 147 46 11

Small Targets Sm 302 60 135

Birds B 81 6 34

Fish Schools F 77 59 85

Table 4.1: Number of target tracks belonging to each class in each of the three data sets
used to evaluate classification performance. The 2017 data set was used to evaluate classi-
fication models in post-processing, and the 2019 data sets were used to evaluate real-time
performance.

optical camera imagery when water clarity/illumination allowed. Table 4.3.1 lists the total

number of target tracks available for each class in this data set (“2017 data set”).

Each target track was described by a set of 28 hand-engineered features, described in

Appendix A. This set of features was adapted and expanded from the features used to

assess the feasibility of classification in Chapter 3. Features include descriptions of target

shape, target motion, target intensity, the characteristics of the sonar image that the target

was detected in, and the environmental covariates. The values of all features for each track

were denoted by a 1-by-m vector, ~xn, where n was the total number of features (n = 32,

because one of the 28 features results in 4 separate values), and m was the total number of

target tracks (3238). Each feature vector, ~xn, was normalized such that the the 10th and

90th percentiles ranged between 0 and 1, respectively, as:

~xn,norm =
~xn − P10(~xn)

P90(~xn)− P10(~xn)
, (4.1)

where Pi represents the ith percentile of ~xn, and ~xn,norm is the vector containing the nor-

malized data. This approach was selected over normalizing such that the maximum and

minimum values equaled 0 and 1, respectively, to prevent outliers from skewing the data set.
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Algorithm
KNN

(ensemble)

KNN

(multi-class)
SVM RF

Paramater k k Kernel Function
Number

of Trees

Values 3,5,7 3,5,7

Radial Basis

Function (RBF),

Linear, 3rd-degree

Polynomial

40, 70, 100,

130, 160, 190

Table 4.2: Parameters tested for each machine learning algorithm. MATLAB defaults were
used for all other parameters.

All normalized feature vectors, ~xnorm, were then assembled into an m-by-n matrix X. The

reviewer-assigned class for each target track was stored in a 1-by-m vector, ~y.

4.3.2 Classification Model Validation

The 2017 data set was used to evaluate the performance of the k-nearest neighbor (KNN),

random forest (RF), and support vector machine (SVM) algorithms for target track classi-

fication. All models were implemented in MATLAB (Mathworks) using the Statistics and

Machine Learning Toolbox. For each algorithm, sensitivity to a core parameter was evalu-

ated, as described in Table 4.2, while MATLAB default values were used for all parameters

not listed. For each set of KNN parameters, both a multi-class model and an ensemble

of binary models were tested (i.e., a binary classification model was trained for each class,

and each target track was assigned the class of the model with the highest probability of

classification). The probability of classification using KNN models was calculated using the

posterior probability. Because SVM is a binary classification algorithm, only ensembles of

binary models were tested using this algorithm. The probability of classification for SVM

models was calculated using Platt’s method [47]. RF is inherently an ensemble approach, so
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only multi-class configurations were tested.

The same validation process was used for each classification model. First, to address the

disparity in the number of tracks belonging to each class in the 2017 data set, data were

randomly subsampled (i.e., undersampling [37]) to provide an equal number of training data

points from each class (77 samples from each class). The resulting subset of the 2017 data

set was then randomly divided into training data (70% of the data) and validation data (30%

of the data), with equal representation from each class in both data subsets. The training

data were used to train the machine learning algorithm to produce a classification model,

which was then used to predict the classes of the validation data.

Classification effectiveness can be described in many ways (e.g., true positive rate, overall

classification rate). Here, a set of metrics selected to be informative for environmental

monitoring are used. The true positive rate for each class, (TPRc), also known as the

sensitivity, was calculated using the predicted classes of the validation data as

TPRc =
TPc

Nc

, (4.2)

where TPc is the number of correct classifications belonging the class, c, (e.g., true positives),

and Nc is the total number of target tracks in the validation data set belonging to the class, c.

The true positive rate for all biological targets (plants and animals), TPRbio, was calculated

as:

TPRbio =
TPS + TPSm + TPB + TPF

NS +NSm +NB +NF

. (4.3)

The TPRbio metric is important in our application because it is maximized when targets of

biological interest are correctly classified. The correct classification of non-biological targets

is of less significance for monitoring at marine energy sites because non-biological targets

are inherently not of interest. The true positive rate for binary classification of biological

targets, TPRbin, was calculated as:
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TPRbin =
TPbio

Nbio

, (4.4)

where TPbio is the number of validation target tracks belonging to biological targets (here,

seals, fish schools, small targets, or birds) that were not predicted to be non-biological targets,

but were not necessarily predicted to belong to the correct biological class, and Nbio is the

total number of biological targets. This metric provides insight into the rate at which targets

of interest would be rejected as non-biological targets. This is relevant to our application

because one benefit of a real-time classification model is to restrict data acquisition to only

periods when a target of interest is present. Finally, the false positive rate (i.e., specificity)

for binary classification of biological targets, FPRbio, was calculated as:

FPRbin =
FPbio

Nnonbio

, (4.5)

where FPbio is the number of non-biological targets incorrectly classified as biological targets

(false positives), and Nnonbio is the total number of non-biological targets. This metric

provides insight into the volume of data that does not contain targets of interest that would

be recorded if the classification model was used to limit data acquisition to periods when a

biological target was predicted to be present.

This validation process, beginning with data subsampling from the total pool of track

data, was repeated 100 times for each classification model, and median and interquartile

ranges for all metrics were used to evaluate model sensitivity to the specific target tracks

selected for training and validation.

4.3.3 Effect of Feature Selection

In any classification problem, it is possible that the full set of features in the available

training data will not provide optimal classification performance, and a subset of those

features would perform better. There are two distinct types of methods for feature selection:

filter methods and wrapper methods [36]. Filter methods take only the training data into
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Percent of Training

Data Retained
70 60 50 40 30 20 10

Number of

Tracks per Class
54 46 38 31 23 15 8

Table 4.3: Data volumes used to evaluate the effect of reduced training data volumes. Note
that data were trimmed to have equal representation from all classes before classification (77
tracks from each class). 30% of the available training data (23 target tracks from each class)
were used for validation in each case.

account, and select features based on some measure of the information that they contain.

Wrapper methods account for both the training data and the classification algorithm, and

find the subset of features that provides optimal performance for a particular algorithm. To

evaluate the consequence of the hand-engineered feature set on classification performance,

each classification model described in Section 4.3.2 was tested with three sets of features: (1)

the entire set of 32 features, (2) a subset of features selected using a filter method, and (3)

a subset of features selected using a wrapper method. While there are numerous approaches

to feature selection in the literature (e.g., [36, 59]), two approaches were selected to compare

representative filter and wrapper methods and to provide insight into the performance of

the hand-engineered feature set. The filter method selected the 16 features whose feature

vectors, xn, had the highest linear correlation coefficients with the class vector, ~y. The

wrapper method used a hill-climbing algorithm with the objective of optimizing TPRbio,

which was adapted from [16], and is detailed in Appendix B.

4.3.4 Extensions of Existing Classification Models

Given that the most time-intensive step in developing a classification model is the annota-

tion of training data, a natural question is the difficulty inherent to extending an existing

classification model to a new location or incorporating a new target class. This could be

particularly problematic when training data includes environmental covariates. For example,
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if a classification model for seals is effective at a tidal energy site, it might not be as effective

at a wave energy site if the class is correlated with environmental conditions that never occur

(e.g., strong tidal currents).

First, to investigate how much training data would be required to adapt a classification

model to a new site, the analysis in Section 4.3.2 was repeated for the top-performing classi-

fication models using each algorithm (based on TPRbio) with sequentially reduced volumes

of training data (Table 4.3). The same fraction of training data (30% of the undersampled

training data set) was used for validation in each case to avoid biasing results. Second, to

evaluate the role of environmental covariates, the wrapper feature selection process was re-

peated with features based on environmental covariates excluded (time of day, current speed,

current direction, and relative target speed). The tidal current was measured by a co-located

acoustic Doppler current profiler. The top-performing classification models using each algo-

rithm, based on TPRbio, were then re-evaluated with the modified feature lists following the

procedures in Section 4.3.2.

4.3.5 Real-time Implementation

Test Site

Target track classification was implemented in real-time during a second deployment of

the Adaptable Monitoring Package in Sequim Bay, Washington in 2019. The BlueView

multibeam sonar (2250 kHz) was again used for real-time target detection and tracking. This

deployment site was approximately 110 meters northeast of the location where 2017 data set

was collected (Figure 4.1). The 2019 location was shallower (average depth of approximately

6 meters) and experienced stronger currents (peak currents of approximately 2 m/s) than

the 2017 deployment site. The data collected during this deployment are separated into two

subsets - 2019a and 2019b, which are enumerated in Table 4.3.1.
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Figure 4.2: Real-time target tracking and classification software architecture. Grey arrows
indicate data transfer. Processes in red take place in the LabVIEW core AMP software, the
components of the real-time module are shown in blue. Note that this architecture could be
extended to any number of sonars (depending on available processing power), though only
two are shown here.

Software Architecture

Data acquisition was performed in the core AMP software (implemented in LabVIEW, Na-

tional Instruments) and real-time processing modules were implemented in MATLAB (Math-

works). The overall architecture is shown in Figure 4.2. Data were stored in 60-second ring

buffers in the core AMP software. The foreground of each sonar image was calculated by

subtracting a rolling background using the median of the previous 10 seconds of data. To

reduce real-time computational requirements, the background was updated once per second,

while multibeam sonar data were acquired at 5 Hz. The foreground of each image was then

stored in a temporary directory accessible by the MATLAB real-time processing modules.

The target tracking and classification modules each operated on a separate worker on a

parallel pool in MATLAB (see Figure 4.2). Here, real-time target tracking and classification

were only implemented for the BlueView M900-2250 multibeam sonar (2250 kHz transducer),

but the same architecture could be extended to handle processing from multiple sensors.

The target tracking module continually read in new foreground images produced by the core
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AMP software. A range-varying intensity threshold (highest intensity threshold closest to the

transducer) was applied to each image before detecting any targets in the image foreground

and tracking them using a Kalman filter, as described in Chapter 3. Each new target track

was assigned a unique identification number. After each image was processed, any target

tracks that were updated in that image and had been detected in at least 4 previous images

were sent to the classification module. If a target track was detected in more than 5 images,

it was sent to the classification module again every time a new target was associated with

the track. Any target tracks that were not updated for over 1.5 seconds were removed from

memory. When the target tracking module lagged behind data acquisition by more than 10

seconds, data older than 10 seconds were ignored until target tracking was able to “catch

up” to real-time acquisition. This “pressure relief” feature was needed to ensure software

stability, but did not have a significant impact on performance, as discussed in Section 4.3.5.

The classification module was designed to be agnostic to the classification model, meaning

that any of the models discussed in Section 4.3.2 could be used. For each target track that

was received, all features listed in Appendix A were calculated. These features were then

normalized based on the 10th and 90th percentiles of the training data (Equation 4.1) and

used to predict the class of the target track. The predicted class, track features, track

identification number, and the time of classification were logged so that tracks could be

re-classified with a different model in post-processing, if desired. The time lag between

data acquisition and target track classification, tlag, is a useful parameter to assess real-time

implementation. tlag was calculated as the difference between the time stamp of the sonar

image for the last target associated with a track and the time when that track was assigned

a class.

The classification module then determined whether the track met criteria to send a trigger

to the core AMP software to archive data. Trigger criteria were user configurable: decisions

could be made based on the predicted class of a target (e.g., only archive data which is

predicted to contain a seal), based on target track features (e.g., only archive data when a

target track exceeds an area threshold), based on environmental covariates (e.g., only archive
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data when current speeds exceed 1 m/s), or any combination of these criteria. Triggers were

passed to the core AMP software via UDP.

Upon receiving a trigger, the core AMP software enabled artificial illumination for co-

located optical cameras for three seconds when ambient light was insufficient to illuminate

the image. The core AMP software then waited 30 seconds to center the event in the 60-

second ring buffer and then archived the entire buffer to disk. The classification module did

not generate a second trigger until 30 seconds had elapsed after the first, because such an

event would already be contained in the archived data (albeit not centered in the recorded

sequence).

Implementation

Based on the performance results presented in Section 4.4.1, a random forest classification

algorithm using 130 trees and features selected by the hill-climbing algorithm was used for

real-time classification. Initially, the model was trained using the 2017 data set and the

processing code was configured to generate a trigger for any target track predicted to be a

target of interest (e.g., a seal) or any target of potential interest that had a 75th percentile

area greater than 0.15 m2 and intensity greater than 60 (sonar data were logged as 8-bit

images, meaning that the maximum intensity value was 255).

110 one-minute sequences collected using this scheme were initially reviewed. The 1203

target tracks in these sequences formed the 2019a data set (Table 4.3.1), which was used to

evaluate classification model performance. These data revealed that the classification model

performed relatively poorly in real time (see Section 4.3.5). To address this, the 2019a data

set was pooled with the 2017 data set, and the combined data set was used to retrain the

classification model. The updated classification model was then implemented in real-time

and an additional 326 one-minute sequences containing 2253 target tracks were manually

reviewed. These target tracks formed the 2019b data set (Table 4.3.1), and were used to

evaluate the updated classification model. Classification using only the 2019a data set for

training was not attempted due to the relatively small volume of training data available for
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some classes (e.g., diving birds).

When calculating the metrics presented in Section 4.3.2 to assess the performance of real-

time classification, tracks were considered to be correctly classified if they were classified as

belonging to the correct class for the majority of the track. This distinction is necessary

because a track could be reclassified multiple times as new targets were detected and added

to the track. For example, if a target track associated with a seal was tracked for 3 seconds,

and sent to the classification module 10 times, it would be considered correctly classified (a

true positive) if it were classified as a seal at least 5 times.

I note that the results presented in Section 4.4.4 are for targets that were detected and

tracked in real-time. However, while a prediction of the class of each target was made in real-

time, the results shown were re-calculated in post-processing because classification methods

were refined over the course of the deployment, and the logs generated by the real-time

processing code enabled re-classification of target tracks in post-processing by a model other

than the one used to generate triggers. However, the models tested in post-processing should

achieve the same results when implemented in real-time, because target detection, tracking,

and calculation of the features used for classification occurred in real-time. Additionally, the

same algorithm (RF) was used in real-time (albeit with varying training data and feature

lists), and tracks of interest were reliably assigned a predicted class with tlag < 10 seconds

(see Section 4.3.5).

4.4 Results and Discussion

4.4.1 Classification Model Performance

Figure 4.3 shows the median value of TPRbio for all classification models tested. Because 44

classification models were tested, Figure 4.4 shows the full set of classification metrics for only

the best-performing model using each algorithm (KNN, SVM, and RF), based on TPRbio.

The full set of metrics for all tested classification models can be found in Appendix C and

sensitivity to feature selection is discussion in Section 4.4.2. The top performing RF and KNN
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Figure 4.3: Median TPRbio for each classification model tested, separated by algorithm and
feature selection method. Note that the y-axis minimum is 0.6 (60% true positive rate for
all biological targets).
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Figure 4.4: All classification metrics for the top-performing classification model using each
machine learning algorithm. The colored line indicates the median value for 100 iterations
of classification model validation, and the interquartile range is indicated by the grey shaded
region. Note that the center of the plot is 0.4 (i.e., 40% classification rate).

models used sets of features selected by the wrapper feature selection algorithm while the top-

performing SVM model used the full set of features. While there are meaningful differences

between the best- and worst-performing classification models for each algorithm, some choice

of model parameters produced relatively high performance for each algorithm. All three

algorithms achieved binary classification rates, TPRbin, greater than 0.96, indicating that

targets of biological interest were infrequently classified as non-biological targets. This metric

also showed the least variability with the subset of data selected for training (i.e., smallest

inter-quartile range for performance metrics).

The RF model demonstrated superior performance by the most metrics, though each

algorithm performed “best” by some metric. The RF model performed best for classification

of diving birds and small targets (TPRB = 0.91 and TPRSm = 0.91), while the SVM model

performed best for classification of seals (TPRS = 0.93), and the KNN model performed

best for classification of schools of fish (TPRF = 0.96). The RF model had the highest

values of TPRbio and TPRbin (0.90 and 0.97, respectively), and the lowest value of FPRbin

(0.13, compared to 0.17 and 0.22 for KNN and SVM, respectively). Superior performance
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of the random forest algorithm for this class of problem is consistent with prior research

on benthic habitat classification using multibeam sonar data [26, 30] and radar target track

classification [53].

4.4.2 Feature Selection

As shown in Figure 4.3, the wrapper method (hill-climbing algorithm) improved classifica-

tion performance for most algorithms, with an average change in TPRbio of +0.03 relative

to classification using the full feature set, and never resulted in a significant decrease in

performance. Conversely, the filter method (correlation) reduced performance for several

algorithms relative to classification using the full feature set, with an average change in

TPRbio of −0.09. This disparity indicates that the hand-engineered feature set contains

redundant features, which are removed by the hill-climbing algorithm but are reinforced by

the correlation method.

The features contained in the subsets selected by the hill-climbing algorithm varied with

classification model. The number of features selected varied as well, with a median list

of 14 features and an interquartile range of 11.5. Figure 4.5 shows the percentage of the

optimized feature lists that each feature appeared in. The time of day (T ) feature appeared

in the most feature lists (85%). This is unsurprising, because seals were almost exclusively

present at night in the training data, and diving birds were almost exclusively present during

daylight hours. Further, time of day is often included as an explanatory variable in ecological

models, such as generalized additive models [54]. Interestingly, while human reviewers often

relied on the shape of a target to annotate the training data, the shape features were used

infrequently in the optimized feature sets. Finally, every candidate feature appeared in at

least one optimized feature list.

The superior performance of classification models with feature lists optimized by the hill-

climbing algorithm reinforces that wrapper feature selection methods that explicitly account

for algorithm strengths and weaknesses are preferable to filter-based approaches based purely

on the feature set [16]. For a given algorithm, the choice of parameter (e.g., number of
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Figure 4.5: Features selected by the hill-climbing algorithm. The x-axis indicates the per-
centage of all optimized feature lists in which each feature is included. The shaded regions
denote the general category of feature (i.e., shape, motion, image, environmental, and inten-
sity descriptors). Features are defined in Appendix A.
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Figure 4.6: TPRbio for the top-performing classification model using each algorithm with
varying volumes of training data. For each model, the same number of samples from each
target class was used (number of training samples). The solid line indicates the median
value, and the shaded region indicates the interquartile range for 100 iterations of validation.
Slight deviation from Figure 4.4 is a consequence of the randomized training data selection
for each iteration.

nearest neighbors) has implications for the optimized feature set selected by hill-climbing.

This approach is robust for hand-engineered feature sets, because it can remove features that

are poorly defined or redundant and features that may match human intuition (e.g., target

area), but do not aid in automatic classification. While the hill-climbing approach requires

moderate computation time (up to 12 hours on a computer with an i7 processor and 16 GB

of RAM), this is not expected to be a hindrance to its application to real-time classification.

Calculation of an optimal feature only needs to occur at the time that the model is trained,

so it will occur before real-time implementation.
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4.4.3 Extensions of Existing Classification Models

Training Data Requirements

Figure 4.6 shows TPRbio for the three classification models in Figure 4.4 with varying volumes

of training data. As expected, performance generally improves with increasing volumes of

training data. However, for all models, improvement begins to taper off as more training

data are available. For the RF model, TPRbio values are approximately stable after 50% of

the available data (38 target tracks from each class) are used for training. Both the KNN and

SVM models continue to show improvement with added training data beyond this point, but

with diminishing returns. While the SVM model reaches approximately the same TPRbio

performance as the RF model with the full training data set (54 target tracks from each

class), it does not perform as well with fewer samples. Overall, this indicates an advantage

of the RF model: for automatic classification of infrequently appearing marine animals, high

true positive rates can be achieved with relatively limited training data.

Reliance on Site Dependent Features

Figure 4.7 compares all classification metrics for the top performing classification model

using each algorithm with and without environmental features excluded from the training

data set. Several trends are apparent. First, classification performance is reduced for most

metrics. However, slight increases are observed in the values of TPRN , the true positive

rate for non-biological targets. This is likely due to the fact that non-biological target

tracks originate from a variety of sources (e.g., reflections from biological targets, turbulent

backscatter during strong currents), and are therefore not correlated with environmental

features. TPRbin and TPRF remain relatively constant for the SVM and RF models. The

stability of TPRbin indicates that while biological classes were classified with lower accu-

racy, they were still classified as biological targets and not as non-biological targets (e.g.,

some birds were misclassified as seals and vice versa). Significant reductions in performance

are seen for TPRB and TPRS, the true positive rates for classification of birds and seals,
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Figure 4.7: Results for the top-performing classification model using each machine learning
algorithm trained without environmental features. The colored line indicates the median
value for 100 iterations of classification model validation, and the interquartile range is
indicated by the grey shaded region. The black dashed line indicates the results shown in
Figure 4.4, with environmental features included in the training data set, for comparison.
Note that the center of the plot is 0.4 (40% classification rate).

respectively. This is because birds and seals were only present in the training data during

near-slack tidal conditions and during daytime and nighttime hours, respectively, resulting

in strong correlations between presence and environmental covariates. As a result, TPRbio,

the overall assessment of biological classification rate, was significantly reduced without the

inclusion of environmental features. Finally, the KNN model shows the most significant de-

creases in performance, indicating that it relies more heavily on environmental covariates for

classification.

4.4.4 Real-time Implementation

Software Performance

The real-time target tracking, classification, and triggering software was stable over the

course of the deployment, with no software crashes that were not the result of software

upgrades (e.g., debugging after implementation of new features) or power outages. The

tracking code was able to keep up with data acquisition reliably - tracking lagged behind
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Figure 4.8: Cumulative density functions of the time to detect, track, and classify a target
(tlag) for each target class (non-biological (N), seals (S), small targets (Sm), diving birds (B),
and fish schools (F)). The inset highlights the region of the plot where the time to track
classification was less than one second.

data acquisition by more than 10 seconds on only 63 occasions over a 15 day period (an

average of 4.2 times per day). On average, it took the target tracking software 9.5 seconds

to recover and resume normal operation.

Target classification lagged behind target tracking due to the sequential nature of the

real-time architecture. When more targets were present, the time required to track and

classify each target track increased. Figure 4.8 shows the cumulative density functions of

tlag for each target class. The shortest tlag was approximately 0.3 second, 100% of biological

targets were classified within 10 seconds, and 100% of seals were classified within 0.5 seconds.

90% of non-biological target tracks were classified within 30 seconds, the maximum possible

value of tlag before the raw data containing the target track was no longer stored in the ring-

buffer. Seals were consistently classified fastest because they typically were the only target

in the field of view at the time of detection. Conversely, non-biological targets took longer to

classify because they were frequently detected concurrently (i.e., many targets simultaneously
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Figure 4.9: Real-time classification results, using the original classification model trained
with only the 2017 data set and the updated classification model trained with the 2017 and
2019a data sets. The 2019a data set was used to validate the original model, and the 2019b
data set was used to validate the updated model. The black, dashed line shows the post-
processing performance of the RF model trained and validated using only the 2017 data set
(from Figure 4.4).

present). These results are encouraging because non-biological targets are not of significant

interest for environmental monitoring. It is important to note that tlag would vary with the

computational power of the control computer, but expect that the general trends would be

consistent.

Classification Performance

Figure 4.9 compares real-time classification performance for the original classification model

(trained using only the 2017 data set) and the updated classification model (trained using

both the 2017 and 2019a data sets). Performance using the original model is quite poor when
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Figure 4.10: Seal detected at <1 meter range from the transducer. The seal is classified
using concurrent optical data (top right), but difficult to distinguish in the sonar data due
to high-intensity sonar artifacts.

compared to the results using the 2017 data for training and validation in post-processing

shown in Figure 4.4. However, the updated classification model that included site-specific

training data improved by nearly every metric. This is unsurprising, given that both 2019

data sets differed in several ways from the 2017 data set. First, fish schools were observed

much more frequently in 2019. The 77 fish school target tracks in the original training data

set were observed in only 11 sequences (e.g., 11 fish schools were tracked, but they were

detected as multiple targets). It is likely that this small sample size resulted in overfitting

of the original classification model for this class (e.g., classification of fish schools relied

on trends that would not be present in a larger training data set). This resulted in an

extremely low classification rate for fish schools using the original model (TPRF = 0.21).

However, after retraining, fish schools have the highest true positive rate of any biological

class and are correctly classified 96% of the time (TPRF = 0.96). Second, non-biological

targets in 2019 had different characteristics — “clouds” of turbulent backscatter were more

frequently observed at longer ranges, likely due to the stronger currents and shallower water

depth. This resulted in a relatively low binary true positive rate (TPRbin = 0.81) using

the original model, because these targets were frequently misclassified as biological targets.

However, TPRbin increased to 0.97 using the updated classification model, a value nearly
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equal to that achieved in post-processing using the 2017 data set. Finally, seals were more

commonly observed at close range to the transducer in 2019. Specifically, 63% of seals in

the 2019a and 2019b data sets were observed at a range less than 2 meters, while <10% of

seals in the 2017 training data were observed inside this range (see Chapter 3). As shown

in Figure 4.10, at this range, a seal produces high-intensity sonar artifacts, and accurate

manual classification is only possible with concurrent optical camera data. This resulted in

relatively low classification rates for seals using both models – TPRS for both the original

and updated classification models was below 0.6.

With the original model trained using the 2017 data set, 25% of non-biological targets

were incorrectly classified as biological targets for the majority of the target track (FPRbin

= 0.25). In other words, if the original model was used to limit data acquisition to periods

when a target was predicted to be a biological target for more than 50% of its target track,

25% of recorded target tracks would not be associated with a biological target. This metric

remained relatively constant for the updated model, at 0.23. This represents a significant

reduction in review effort when compared to human review of continuous data.

It is important to note that these classification results only pertain to targets that were

successfully detected and tracked for more than one second, and it is likely that a small

number of targets with shorter tracks were never classified. However, based on the analysis

presented in Chapter 3, it can be expected that only 1% of discarded data contained targets of

interest. Further, even a human reviewer would be challenged to classify targets that are only

present in multibeam sonar data for less than one second and the environmental interactions

of greatest interest for marine renewable energy will generally involve more sustained target

presence.

4.4.5 Recommendations for Implementation at a Marine Energy Site

I have demonstrated that machine learning classification of targets in multibeam sonar data

can achieve relatively high accuracy, with the exception of classification of large targets de-

tected at close range (e.g., seals ≤ 2 meters from the transducer). However, classification
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model effectiveness appears to be strongly site-specific, with more substantial differences ob-

served for the same classification model across two locations than for a range of classification

models at the same location. This is consistent with target classification using analogous

radar imagery [53]. Site-specific variation is exacerbated at marine energy sites, particularly

tidal energy sites, where high-energy conditions create dynamic environments with different

characteristics at spatial scales on the order of 100 meters or less [49].

I have also demonstrated that binary classification (i.e., biological vs. non-biological)

is more accurate than taxonomic classification (i.e., target belongs to “seal” class). This

is also consistent with the findings of [53] for classification of birds tracked in radar data.

Based on this, I recommend that real-time binary classification of biological targets be used

to control data acquisition at marine energy sites, because the “cost” to store additional

data is relatively low compared to the risk of missing a critical event. Using this approach,

environmental interactions of potential interest can be archived with a relatively high true

positive rate (over 95%). This method is also expected to record a manageable volume of

data compared to continuous acquisition (true negative rate below 25%), which will enable

rapid human review for timely decision-making. Because real-time taxonomic classification

showed lower true positive rates, but still performed relatively well, these results could be

used to control automatic adaptive action (e.g., enabling mitigation measures, such as fish

deterrents), where the “cost” of an incorrect classification is lower.

Based on the results presented here, I recommend the following procedure to train a

classification model at a new marine energy site:

• Implement real-time target tracking, using manually-tuned thresholds to trigger data

acquisition (e.g., size and intensity). These thresholds should be set based on the

smallest/least intense target of interest (e.g., area thresholds can be higher if marine

mammals are the only targets of interest, and lower if detection of fish is desired).

Tuning of thresholds may require iterative human review if either too many targets

that are not of interest are being recorded or it is suspected that thresholds are too
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high to record targets of interest.

• Have a human reviewer annotate recorded target tracks to the finest taxonomic level

possible and use this information to build a binary classification model that distin-

guishes between biological and non-biological targets. I recommend using a random

forest algorithm and a wrapper feature selection method, as this method was robust

and required the least training data to achieve a high true positive rate. Regardless of

the algorithm employed, feature optimization is recommended.

• Evaluate the model in post-processing using the methods outlined in Section 4.3.2. If

the model achieves satisfactory performance for the application, implement in real-time

to limit data acquisition to periods when a biological target is likely present, thereby

minimizing the volume of data requiring curation or human review. If the model does

not achieve satisfactory performance, continue to acquire additional training data to

increase the volume of training data available.

• When finer taxonomic classification is desired, continue acquiring data and reviewing

target tracks until approximately 40 target tracks are identified in each class of interest,

then retrain the model with these classes defined. I recommend that this model be used

to control automatic adaptive action in real-time or to guide human review in post-

processing.

This approach can also be applied to existing data sets in post-processing, if the model

is trained and validated using a subset of the available data and then used to automatically

process the remaining data. Such a method could be used to rapidly evaluate temporal

and spatial trends in class presence/absence. Additionally, the same target-tracking based

approach to classification could be implemented with other multibeam sonars. However,

sonar-specific training data would be required because the ranges of color-based (intensity)

parameters will vary between sensors and this feature is often used in classification. Au-

tomated translation of classification models between sonars is a potential topic for future
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research, as is using the predicted probability of classification to identify aberrations that

may be indicative of a new class.

4.5 Conclusions

Automatic classification of seals, diving birds, small targets, fish schools, and non-biological

targets in multibeam sonar data has been demonstrated in post-processing with a true pos-

itive rate of 0.90 for biological targets. Support vector machines, k-nearest neighbors, and

random forests with varying parameters were evaluated for this task, and the random forest

algorithm was found to perform best. Performance was improved through a wrapper feature

selection method. The random forest classification model was implemented in real-time, and,

after limited retraining with site-specific data, was able to distinguish between biological and

non-biological targets with a true positive rate of 0.97 and a false negative rate of 0.23. De-

velopment of a classification model at a new test site is expected to be possible with relatively

small training data sets (< 40 samples from each class). In aggregate, this method appears

to be broadly applicable within the marine energy sector to gather information needed to

retire or mitigate environmental risks.
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Chapter 5

ACOUSTIC EVALUATION OF SENSORS FOR MARINE
ENVIRONMENTAL MONITORING

Because artificial illumination is known to bias marine animal behavior [24, 39, 52], the

Adaptable Monitoring Package uses active acoustic sensors to limit the use of strobe lights

to periods when there is a target in close proximity to the system. However, the effects that

these active acoustic sensors might have on animal hearing are not well studied. Potential

impacts on marine mammal hearing are of particular interest, because marine mammals

have relatively broad hearing ranges and use sound for communication and navigation. In

this chapter, the acoustic emissions from four active acoustic transducers that have been

integrated into the Adaptable Monitoring Package are investigated within the context of

marine mammal hearing. Potential impacts on fish and invertebrate hearing are also of

interest [46], but are not the focus of this work.

The contents of this chapter that follow were originally published in the Marine Pollution

Bulletin:

E. Cotter, P. Murphy, C. Bassett, B. Williamson, and B. Polagye. Acoustic Characterization

of Sensors for Marine Environmental Monitoring. Marine Pollution Bulletin (114) 205-

215. 2019.

Minor modifications have been made for cohesion with the remainder of this thesis.

5.1 Introduction

Active acoustic sensors are used for a variety of scientific purposes, including fisheries stock

assessment [20, 58], water current measurements [61, 64], hydrographic surveys (Lundblad
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et al., 2006; Wilson et al., 2007), and marine mammal monitoring [28, 38, 50, 69]. The

operational frequencies used by these sensors are driven by many factors, including scattering

physics, acoustic attenuation rates, and study range. For example, in fisheries acoustics,

lower frequency instrumentation (< 100 kHz) that allows for sampling at ranges of hundreds

of meters is often used, while short-range imaging applications generally operate at higher

frequencies. There are many advantages to using active acoustics in lieu of optical or passive

acoustic sensors: they can operate when darkness, water conditions, or range may limit

the use of optical cameras, and can detect marine animals when they are not vocalizing.

However, if transducers produce sound within the range of marine mammal hearing, it may

cause temporary or permanent hearing threshold shifts (NMFS, 2018) or affect their behavior

if they are attracted to or avoid the source [27, 60].

The US National Marine Fisheries Service (NMFS) provides technical guidance to assess

the effects of sound exposure on marine mammals, including definition of the hearing ranges

of five groups of marine mammals (Table 5.1). Further, NMFS recommends that the cu-

mulative sound exposure level (SELcum) be used to assess the risk of hearing damage from

non-impulsive sounds, and that sonars be treated as non-impulsive sources because their

pulse durations are sufficient to reach a steady-state [45]. SELcum uses an equal energy hy-

pothesis and an auditory weighting function specific to each marine mammal hearing group

to assess the cumulative impact that a source has on a marine mammal over time [62]. If

SELcum exceeds a hearing group-specific threshold (Table 5.1), a temporary threshold shift

(TTS) in hearing may be expected. In extreme cases, a permanent threshold shift may occur.

For many applications, active acoustic sensors are mounted to a moving vessel and de-

ployed for short periods. In this scenario, exposure levels for any individual animal will likely

be low because an individual animal is unlikely to remain within the ensonified area for a long

period. However, when continuous monitoring of a site is required, sensors may be operated

for extended periods from a stationary platform (e.g., monitoring of a tidal turbine, as in

[67]). In these cases, a more careful consideration is required to evaluate exposure effects. If

the source level of a transducer at maximum power input is known, then it can be calculated
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at other power levels as

SL = SLmax + 10 log10

P

Pmax

(5.1)

where SLmax, in dB re 1 µPa, is the source level (received level at a range of one meter)

on-axis within the beam at Pmax, the maximum transmit power, and SL, in dB re 1 µPa,

is the source level at another transmit power, P . SELcum for a receiver on-axis within the

beam can then be calculated as

SELcum = SLW − 20 log10R + 10 log10 τ + 10 log10 n− αR (5.2)

where SLW , in dB re 1 µPa, is the weighted source level calculated by applying the auditory

weighting function for a specific marine mammal hearing group to SL; R is the range, in

meters, from the transducer to the receiver; τ is the pulse duration, in seconds; n is the num-

ber of pulses within an evaluation window; and α is the coefficient of absorption, in dB/m.

SELcum has units of dB re 1 µPa2-s. Estimating SELcum when off-axis is more difficult as

it requires either measurements of the beam pattern or an analytical model based on the ge-

ometry of the transducer [42]. For fisheries echosounders, if the nominal operating frequency

lies within a marine mammals hearing range (Table 5.1), this calculation is straightforward

because the source level, pulse duration, and beamwidth are known through calibration [14].

If the nominal operating frequency is above a marine mammals hearing range, there may

still be acoustic emissions at lower frequencies [15, 26, 51]. This “out-of-band” sound can

originate from sources such as “leakage” of the high-frequency signal to lower frequencies or

sound associated with switching between transmit/receive modes or other sonar functions.

Source levels for emissions at these frequencies, particularly as a function of position within

the beam, are often not well-characterized, and out-of-band emissions may vary over the

nominal pulse duration.

In this study, acoustic emissions from four active acoustic transducers are characterized:

two multibeam sonars (one with two operating frequencies) and an acoustic Doppler current
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Group Hearing

range (kHz)

SELTTS (dB

re 1 µPa2-s)

Low-frequency cetaceans (baleen whales) 0.007-35 179

Mid-frequency cetaceans (dolphins, toothed

whales, beaked whales, bottlenose whales)

0.150-160 178

High-frequency cetaceans (porpoises, Kogia, river

dolphins, Lagenorhynchus criciger, L. australis

0.275-160 153

Phocid pinnipeds (seals) 0.050-86 181

Otariid Pinnipeds (sea lions and fur seals) 0.060-39 199

Table 5.1: Hearing ranges and SELcum thresholds for TTS onset (SELTTS) for five marine
mammal hearing groups (NMFS, 2018)

profiler (ADCP). As summarized in Table 5.1, the nominal operating frequencies of these

transducers exceed the marine mammal auditory range. Acoustic emissions below 160 kHz,

the upper limit of marine mammal hearing [45], are characterized in the along-swath and

across-swath directions. From these measurements, SELcum is estimated throughout the

sonar swath and the extent of audibility to each marine mammal hearing group is estimated.

Acoustic emissions from one of the multibeam sonars (Tritech Gemini) have been previously

characterized [27] but are not presented in a manner that would allow SELcum to be esti-

mated. The author is not aware of acoustic characterizations in the public domain for the

other multibeam sonar (BlueView M900-2250) or acoustic Doppler current profiler (Nortek

Signature 500). The methods presented in this paper can be used to assess other active

acoustic sensors in a manner that allows for effective comparison between transducers and

for the results to be used for environmental assessments.
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5.2 Methods

Evaluation of acoustic emissions was performed in two phases. First, an initial evaluation of

each transducer was conducted to determine what, if any, sound it produced below 160 kHz

at the center of the swath (i.e., on-axis) and how that sound varied with transducer operating

mode (e.g., intended operating range, power level). Second, across-swath and along-swath

sweeps were conducted for each transducer at the operating mode associated with highest

amplitude sound. All activities were performed in Portage Bay, Seattle, WA (freshwater,

approximately 21oC) on R/V Henderson, a 21-meter steel-hull catamaran vessel. The water

depth at the test site was 5.1 meters and the water was quiescent, with no currents or waves.

Two Ocean Sonics icListen HF hydrophones (0.01-200 kHz frequency range, 512 kHz sample

rate, standard GeoSpectrum hydrophone) were used to record sound from each transducer.

The icListen uses a sigma-delta converter that samples at 16 MHz. Data are low-pass filtered

(cut-off frequency of 250 kHz) to prevent aliasing and decimated to a sampling rate of 512

kHz (personal communication, Mark Wood, Ocean Sonics Ltd.).

An in-situ calibration of the hydrophones was conducted to determine their respective

sensitivities in the direction of the active acoustic sources. The hydrophones were mounted

in their measurement positions on R/V Henderson and an F41 acoustic projector with a

traceable calibration was mounted at the same location as the active acoustic transducers

under evaluation. Hydrophone sensitivities were estimated from 20 to 150 kHz in 0.5 kHz

steps. Because the F41 transducer does not produce calibrated sound at frequencies below

20 kHz, sensitivities from 1 kHz to 20 kHz were taken from the manufacturer calibration, and

sensitivities from 0.001 to 1 kHz were taken from a third-party calibration by Ocean Networks

Canada. Although the calibrations conducted at Ocean Networks Canada did not account

for directionality, the manufacturer calibration suggests directionality is not significant at

frequencies less than 20 kHz. It was necessary to move the hydrophones between the two

measurement phases, which resulted in 5o degree azimuthal uncertainty in their orientation.

For the first phase of testing, each active acoustic sensor was mounted to a hydraulic ram
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Figure 5.1: Test configuration (plan view; not to scale). “A” represents the aft hydrophone,
and “F” represents the fore hydrophone. The blue swath represents the projection of a
nominal swath from a transducer. The transducer and hydrophones were positioned below
the barge hulls.

between the hulls of the vessel, oriented towards the bow of the vessel, and lowered to a depth

of 2.1 meters. The transducers were below the catamaran hulls at this depth. The multibeam

sonars were oriented such that the along-swath direction was parallel to the water surface.

The Gemini was mounted with a 10-degree upward tilt to compensate for an internal 10-

degree downward tilt. The Signature 500 was oriented such that the center (i.e., “vertical”)

beam was directly facing the hydrophone (all other beams were disabled during testing). The

hydrophones were mounted to rigid posts and lowered below the hull of the vessel such that

their transducers were at the same depth as the center of the beam. One hydrophone was

mounted 6.0 meters directly in front of the active acoustic transducer (“fore hydrophone”)

and one hydrophone was mounted 0.79 meter directly behind the active acoustic transducer

(“aft hydrophone”) (Figure 5.1). The fore hydrophone was in the acoustic far-field of all

transducers at their nominal operating frequencies (see Table 5.1). Because the distance to

the far-field is proportional to frequency for a fixed aperture (Medwin and Clay, 1997), the

near-field at the frequencies reported in this paper (< 160 kHz) is expected to be smaller
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than the values presented in Table 5.1 (see further discussion in Appendix D). The aft

hydrophone was not positioned in the far-field of all transducers, so source levels could not

be calculated for this orientation. The test depth was fixed by the length of hydrophone

cable, and the distances from the active transducer were fixed by hardware mounting points

available on R/V Henderson.

As summarized in Table 5.2, both BlueView transducers (900 and 2250 kHz) were cycled

through multiple power settings. The range setting of the Gemini was varied instead of power

level, as the Gemini software (SeaTec) does not allow the power level to be adjusted. The

Signature 500 was tested at its maximum transmit power with only the center beam enabled

to prevent reverberation from the diverging beams, under the assumption that the other

four beams have comparable acoustic characteristics. Manufacturer defaults were used for

all other settings. At least 60 pings were recorded at each operating mode. The hydrophone

data were monitored in real-time to avoid collecting data when ambient levels were elevated

due to intermittent anthropogenic noise (e.g., vessel traffic), and data were collected at night

when ambient noise was at a diurnal minimum. At least 30 seconds of ambient noise (no

transducer pinging) was recorded between each test of transducer operating modes.

Individual pings were isolated from the hydrophone data to characterize the sound gen-

erated by a transducer in a particular operating mode. For the first phase of testing, the

first arrivals of 30 pings were isolated for each operating mode. This was done using a

semi-automated process. A spectrogram of the recording window for each sonar mode was

displayed to a human reviewer. From this, a relatively “clean” portion of the time series

(e.g., no passing vessel traffic) was selected for processing. The reviewer then selected a

frequency bin where the active transducer signal was clearly visible in the spectra to create

a bandpass filter centered at the selected frequency with a passband and stopband that were

25 and 500 Hz wide, respectively. This filter was then applied to the voltage time series,

and a threshold was manually selected to identify the approximate time of each ping in the

filtered data, as shown in Figure 5.2a. All subsequent analysis was performed on the original,

unfiltered data.
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Sensor Operating mode Range

setting (m)

Pulse

repetition

rate (Hz)

BlueView (2250 kHz)

25% power level 10 11.4

50% power level 10 11.4

75% power level 10 11.4

100% power level 10 11.4

BlueView (900 kHz)

50% power level 50 3.3

70% power level 50 3.3

85% power level 50 3.3

100% power level 50 3.3

Gemini

Default 10 10

Default 50 10

Default 100 10

ADCP Single beam, Maxi-

mum Power Level

47 8

Table 5.3: Transducer operating modes. Note that the range setting indicates the sensor
operating setting, not the range at which received levels were measured.
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Figure 5.2: Sample voltage time series data from on-axis measurement of the 2250 kHz
BlueView at 100% power. a) Approximate ping events detected in filtered data using an
amplitude threshold (yellow circles). b) 20 ms window around one ping event, including
the first arrival (yellow) and subsequent multi-path arrivals. Only the first arrival is used
for subsequent analysis. c) Ping automatically detected using cross-correlation with the
manually identified template signal. The dashed blue line shows the lag values at peak
cross-correlation in the window.

A 2 ms time window around an identified ping was then displayed, and the reviewer man-

ually selected the start and end time. This produced a “template ping” used to isolate other

pings in the time series. As shown in Table 5.2, the pulse durations of the pings observed

in the measurements did not match the manufacturer-specified pulse durations. The dis-

crepancy is likely because the manufacturer-specified pulse durations apply to the operating

frequency of each instrument, while these measurements are limited to the bandwidth of the

hydrophones.

The template ping was used to isolate pings at each of the identified points in the filtered
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Sensor
Pulse duration (µs)

Manufacturer-specified Observed

BlueView (2250 kHz) 640 398

BlueView (900 kHz) 1,600 2,381

Gemini

10 meters 12.2 184

50 meters 88.3 328

100 meters 177 328

Signature 500 673 1,678

Table 5.4: Manufacturer-specified pulse duration at nominal operating frequency and esti-
mated values from measurements.

data using cross-correlation. The time window with the highest cross-correlation with the

template ping was identified, and the lag value at the peak cross-correlation was taken to

be the start of that ping, as shown in Figure 5.2c. After automatic detection, each ping was

manually reviewed to ensure that the beginning of the ping was accurately located. Because

surface reflections resulted in multiple arrivals of each ping (Figure 5.2b), the ping was shown

to the reviewer in the context of the time series to ensure that only first arrivals were included

in subsequent analysis. The same template ping was used for transducer operating modes

expected to have the same ping profile (e.g., the same transducer operating at 50% and 100%

power level). A representative ping from each transducer, received by the fore hydrophone,

is shown in Figure 5.3.

The first arrivals of pings in the aft hydrophone data were automatically isolated by

shifting the time window for each detected ping by the time difference of arrival between

the two hydrophones using an estimated sound speed of 1486 m/s [40] and the separation

distance from the forward face of the transducer.

The frequency content of each ping was calculated using a discrete Fourier transform

(DFT). Because of the short pulse duration (300-2000 µs), a window length equal to the size
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Figure 5.3: Representative on-axis pings from each transducer. For visualization, data are
normalized by the peak absolute pressure in each time-series. 100% power modes are shown
for both BlueView transducers, and both 10 and 100-meter operating ranges are shown for
the Gemini. The structure of the pings were approximately constant with varying power
level for both BlueView transducers, as well as for the 50 and 100-meter range modes for the
Gemini. Note that the time scale varies between plots because of varying ping duration.
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of the longest ping (the 900 kHz BlueView, at 1219 points) was used and a periodic Blackman

taper applied. For pings with a pulse duration shorter than the window length, the data

were zero-padded after tapering. This yielded the mean-square sound pressure, p2(f), in

units of Pa2/Hz with a frequency resolution of 420 Hz. The median and interquartile range

of p2(f) were calculated for the 30 identified pings.

Fifteen seconds of ambient data were processed using the same approach as the ping

data to allow sound during a ping to be compared to ambient noise. The mean-square

sound pressure spectral density (PSD) of each ping, in dB re 1 µPa2/Hz, was calculated by

subtracting the ambient mean-square sound pressure spectrum recorded closest to each ping,

p2a(f):

PSDh(f) = 10 log10

p2(f)− p2a(f)

p2ref
(5.3)

PSDh(f) is the PSD measured at the hydrophone, and p2ref is the reference pressure (1

µPa2/Hz).

Fluctuations in ambient sound pressure did not contribute significantly to ping-to-ping

variations in PSDh(f). Figure 5.4 compares the interquartile range of a 15-second window of

ambient PSD recorded before each transducer was tested to the PSD measured immediately

before each detected ping. This demonstrates that ambient PSD did not vary significantly

during testing. The peak in the ambient PSD at 50 kHz is likely associated with depth

sounders from a nearby marina. Because pings that contained the 50 kHz signal were dis-

carded during manual review, this means that PSDh(f) is slightly over-corrected at this

frequency. However, this is of limited consequence, as ambient PSD is at least a 10 dB below

the source PSD of the active transducer pings for most frequencies (see Figure 5.5).

PSDh(f) for the first arrival was extrapolated to the PSD at the source (received levels

at a range of 1 meter) as:

PSD(f) = PSDh(f) + 20 log10Rh (5.4)
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Figure 5.4: Variations in ambient sound during testing for each transducer. The grey shaded
region depicts the interquartile range of the ambient PSD calculated for 15-second recordings
before the test window. The colored lines indicate the median PSD calculated for the 3.9 ms
(2000 points) preceding each detected ping.
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PSD(f) is the source PSD, in dB re 1 µPa2/Hz, and Rh is the range to the hydrophone

(6 meters). Given that measurements were made in freshwater with a relatively short path

length, absorption is negligible (≈0). Specifically, absorption is approximately 5.4 dB/km

in freshwater at 21oC with a pH of 7.5 at the measurement depth of 2.1 meters, or 0.03

dB over the 6 meter measurement distance [22, 23], which is negligible in comparison to

measurement accuracy. As previously discussed, a receiver at 1-meter range is in the far-

field for all transducers at 160 kHz except the Gemini, which has an estimated nearfield

range of 1.1 meters at this frequency (see Appendix A).

PSD(f) can be inverted to yield a source pressure distribution as:

p2s(f) = p2ref10
PSD(f)

10 (5.5)

Decidecade source levels ([31], equivalent to one-third octave band source levels, were calcu-

lated as:

SLddec(f) = 10 log10

(∫ f2

f1

p2s(f)

p2ref
df

)
(5.6)

where f1 and f2 are the upper and lower frequencies of the band, respectively, and SLddec(f)

is in dB re 1 µPa.

The active acoustic sensors were rotated by the hydraulic ram to characterize variation in

sound level in the across-swath and along-swath axes for the multibeam sonars, and across the

beam of the Signature 500 (see Figure 5.1). To do this, the transducers and hydrophones were

initially mounted in the same configuration as in the first phase of testing. The multibeam

sonars were rotated 360 degrees in a clockwise direction, pausing every 5 degrees to record at

least 30 pings. The ram was positioned with 0.02-degree precision. Within 10 degrees of the

manufacturer-specified edge of the sonar swath, the angular resolution was doubled to 2.5

degrees to ensure that the edges of the swath were well-resolved. This test was repeated with

the sonar swaths oriented parallel and perpendicular to the seafloor to characterize along-

swath and across-swath variation, respectively. An error in hydrophone data acquisition
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resulted in a loss of data between 20o and 35o for the Gemini across-swath sweep (outside of

the nominal swath width). Because the Signature 500 beam is relatively narrow compared

to the multibeam sonars swaths, 1-degree resolution was used for the Signature 500, with the

resolution increased to 0.5 degrees within one degree of the edge of the beam (the ram was

positioned with 0.01-degree precision). The Signature 500 beam pattern was assumed to be

axisymmetric [42], so only one orientation was tested. The raw Signature 500 beam pattern

showed the peak in received levels shifted 0.5 degrees to the right. However, it was assumed

that this shift was due to inaccuracy in positioning the Signature 500 on the hydraulic ram,

and reported values were shifted so that the peak received level is at zero degrees rotation.

For these measurements, pings were detected in the time series data by the peak cross-

correlation with the template ping. If fewer pings were detected than anticipated (e.g.,

near the edge of the swath as received levels decreased), a bandpass filter was applied to

attempt to isolate pings in the data, following the methodology used to isolate pings in the

on-axis measurements. Additionally, when the ping structure was observed to change within

the swath, the reviewer was able to update the template ping (maintaining the same pulse

duration). All pings were manually reviewed to ensure accuracy in ping selection. Ten pings

were selected for analysis at each angular position, and PSD(f) and p2s(f) were calculated

for each ping at each position using equations 5.3-5.5.

The source level (SL) of each ping, in dB re 1 µPa at 1 meter, was calculated from

measurements as:

SL = 10 log10

(∫ 160kHz

0

p2s(f)

p2ref
df

)
(5.7)

SL for each angular position was defined as the median SL of the 10 pings at that position,

calculated in pressure-squared space.

The PSD at each angular position was used to estimate SELcum for each marine mammal

group as a function of range and direction from the transducer. The auditory weighting

function for each marine mammal hearing group, W (f), was applied to the PSD for each

position in the across-swath and along-swath sweeps to produce a weighted PSD, PSDW.
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W (f) was applied in log-space as:

PSDW (f) = W (f)PSD(f) (5.8)

A weighted source level, SLW , in dB re 1 µPa, was then calculated as:

SLW = 10 log10

(∫ 160kHz

0
10

PSDW
10 df

)
(5.9)

These weighted SLW values were used to calculate SELcum, in dB re 1 µPa2-s, at each

angle and range, R, in meters, from the transducer by applying Equation 5.2. The number

of pulses, n, varies with the exposure time, T , as:

n = Tr (5.10)

where r is the pulse repetition rate, in pulses per second, and T is time in seconds. For

example, the 2250 kHz BlueView had a pulse repetition rate of 11.4 Hz with an observed

pulse duration of 398 s. After T = 1 minute within the sonar swath, a marine mammal

would be exposed n = 684 pings. Calculation of SELcum was repeated for exposure times

from 0 to 104 minutes (approximately 7 days) and for ranges from 1 to 20 meters. It was

assumed that an animal makes no auditory recovery between pings [45], and the absorption

coefficient, α , was calculated for representative conditions in seawater (10oC, 35 psu, pH 8)

at a depth of 10 meters. These calculations assume an unobstructed acoustic path between

source and receiver and neglect boundary interactions. In other words, these results would

be accurate for a downward looking sonar in relatively deep water, but in shallower water or

other sonar orientations, site-specific propagation modeling would be necessary to estimate

the propagation loss. Results are presented in terms of the percentage of the TTS threshold

(SELTTS in Table 5.1) that is exceeded at a given position and exposure time ( SELcum

SELTTS
),

calculated in pressure-squared space). In addition, the exposure time, TTTS, that an animal

would need to spend at a given location in the sonar swath before exceeding SELTTS was
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calculated. The tables contained in [45] were used for auditory weighting functions and TTS

exposure thresholds.

Finally, PSD(f) was used to estimate the maximum ranges at which marine mammals

might be able to detect the sound produced by each sonar using the composite audiograms

for each marine mammal hearing group derived in [45] and representative ambient noise

levels at sea state one [65]. A simple propagation model was used to predict the received

level at varying ranges from the sonar:

RL = PSD(f)− 20 log10R− α(f)R (5.11)

It is assumed that integration times play no role in audibility to provide a conservative

estimate of hearing ranges [19]. This calculation was repeated for the PSD measured at

each angular position within the beam. The absorption coefficient for each frequency, was

calculated for representative conditions in seawater (10oC, 35 psu, pH 8) at a depth of 10

meters, the same conditions used for SELcum calculations. The sonar was considered to be

no longer audible at the range where received levels at all frequencies and at all points in

the beam fell below either the animals hearing threshold or the ambient noise level. Because

of the relatively low ambient noise levels, animal hearing thresholds were the determining

factor in audibility for all frequencies and marine mammal hearing groups.

5.3 Results

5.3.1 Acoustic Characteristics

Figure 5.5 shows the median source PSD and SLddec at 1 meter range from the transducer for

pings measured by the fore hydrophone for each sonar operating mode at the center of the

swath. The dashed, black line in each plot shows the ambient noise level during the test. All

three sonars produced measurable sound within the range of marine mammal hearing in front

of the transducer. For both BlueView transducers, the amplitude of the sound decreased

non-linearly with power level setting, though the frequency content was independent of power
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Figure 5.5: Median mean-square sound pressure spectral densities measured at the center
of the sonar swath or Signature 500 beam for each transducer mode. The left-hand column
shows the estimated PSD at one meter range from the transducer, and the right-hand column
shows decidecade sound pressure levels at the same range. The shaded region indicates the
interquartile range for all pings, and the dashed line indicates the ambient noise level recorded
closest to each test.
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level. For example, for the 2250 kHz transducer, the decrease in source PSD from 75% to

50% power is smaller than the decrease from 50% to 25% (average decreases of 4 dB and 8

dB, respectively), but the source PSD for the 75% and 100% power modes are similar. The

same trend is observed for the 900 kHz BlueView transducer. This non-linear relationship

between power level and source level is consistent with Equation 5.1.

The BlueView (both transducers) and Gemini also produced low-amplitude sound within

the range of marine mammal hearing behind the transducer (aft hydrophone), most signif-

icantly for the 2250 kHz BlueView. As with the fore measurement, PSD increased with

power level for both BlueView transducers. For the Gemini, the 50-meter and 100-meter

range modes again had similar PSDs, while the 10-meter range was not detectable above

ambient noise behind the transducer. The Signature 500 also was not detectable behind the

transducer. For all transducers, the received PSD behind the transducer (0.79 meter range)

did not exceed 20 dB above the ambient levels at any measured frequency.

5.3.2 Beam Patterns

Figure 5.6 shows the across-swath and along-swath variations in SL (Equation 5.7) for each

sonar at the operating mode corresponding to the maximum SL. The dashed line indicates

the median ambient level closest to the time of recording. Several observations can be made.

First, for the BlueView and Gemini, SL at the edge of the nominal swath is lower in the

along-swath direction, and rolls off more quickly outside of the nominal swath in the along-

swath direction than in the across-swath direction. Second, distinct trends can be observed

in the beam pattern of each instrument. For the Signature 500, the center is the highest-

amplitude point and SL rolls off towards the edge of the beam. As a consequence of increased

transducer complexity in the along-swath direction, the Gemini and BlueView have greater

variability. For the Gemini, the maximum SL is observed near the edge of the swath. For

the BlueView 2250 kHz, there are local maxima in SL throughout the swath, likely because

three synchronized transducers are used to produce a single acoustic image. Asymmetry in

the beam pattern is likely due to angular positioning error in sensor mounting (e.g., -5o and



90

Figure 5.6: Median source level (unweighted, 0-160 kHz band) for ten pings recorded with
the fore hydrophone at each orientation. The left-hand column shows the along-swath levels
and the right-hand column shows the across-swath levels. The grey shaded region indicates
the nominal swath or beamwidth of each transducer at the nominal operating frequency, and
the colored shaded region indicates the interquartile range for the source level. The black
dashed line indicates the ambient received level at the time of recording. The deviations
between along-swath and across-swath measurements at 0o are most likely attributable to
alignment error in positioning the transducers (see Section 5.3.3).
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5o were not equidistant from the center axis) and the relatively coarse resolution in across-

swath and along-swath sweeps, such that sharp gradients within the swath may not have

been resolved.

5.3.3 Experimental Repeatability

Because the test set-up did not allow for precise sonar alignment, there is some inter-test

variability. For example, the BlueView was removed and re-mounted to the hydraulic ram

between the along-swath and across-swath characterization. This resulted in an increase in

estimated SL at the beam center in the vertical measurements. This indicates that the zero-

degree position in the along-swath direction was not perfectly aligned with the corresponding

zero-degree position in the across-swath position. Similarly, the source PSD curves reported

for the different operating modes are at the nominal beam center in the across and along

swath direction. This suggests that the measurements are sensitive to the precise position in

the beam and that some results here may slightly under-report the peak values within the

swath. More precise measurements could be obtained by a rigid mounting system directly

coupling the active acoustic sensor to the hydrophone.

5.3.4 Cumulative Sound Exposure Level

Figure 5.7 shows the percentage of SELTTS as a function of range and time spent at the

angular position within the swath/beam with the maximum SL. It is emphasized that these

results are for a case in which boundary interactions are negligible. Results are only shown for

high-frequency cetaceans, because they were the only one of the five NMFS marine mammal

hearing groups that exceeded the TTS threshold within T = 1 day of exposure (the maximum

integration time recommended for a continuous source [45]). Of the sonars tested, the Gemini

could cause a temporary threshold shift in high-frequency cetaceans first, at approximately

T = 2.6 hours at 1 meter from the sonar. For context, at a range of 1 meter, the Gemini

swath is only 35 cm in the along-swath direction, and therefore an animal larger than the

ensonified area would need to remain stationary for 2.6 hours before experiencing TTS. The
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Figure 5.7: Percent of SELcum TTS threshold for high-frequency cetaceans, as a function of
time and range from the sonar. The black line indicates TTTS, the time at exceedance of the
TTS threshold for a high-frequency cetacean in the portion of the swath with the highest
source level.
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Figure 5.8: The exposure time, TTTS, before the NMFS SELcum threshold for high-frequency
cetaceans is exceeded as a function of position relative to the transducer. All transducer
swaths are shown to the same scale. The black line indicates where TTTS exceeds 24 hours.
a) and b) show the along and across-swath direction of the 2250 kHz BlueView, respectively,
c) and d) show the along and across-swath directions of the Gemini, respectively, and e)
shows the symmetrical swath of the Signature 500. The 900 kHz BlueView is not shown
because TTTS exceeds 24 hours at all ranges and positions. As for Figure 5.6, the disparity
between TTTS in the across- and along-swath orientations for the BlueView is most likely a
consequence of a minor alignment error.
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Signature 500, 2250 kHz BlueView, and 900 kHz BlueView would exceed the TTS threshold

at 1-meter range at approximately 6.1, 8.3, and > 24 hours of exposure, respectively.

While all four of the transducers produced measurable sound within the range of marine

mammal hearing, the SELcum metric indicates that in an operational context, these trans-

ducers are unlikely to affect hearing sensitivity for any of the five marine mammal hearing

groups when operated continuously from a stationary platform. Figure 5.8 shows the time,

TTTS, that a high-frequency cetacean would need to spend at a given point in the sonar

swath before TTS is expected. The black line indicates the range where TTTS is equal to 1

day. The region of the swath where TTTS would be expected within 24 hours is less than 3

meters for all sonars. For the Gemini, the transducer with the highest amplitude out-of-band

emissions, the ensonified volume where SELcum exceeds the TTS threshold within one day

is less than 5 m3. Even when considering that the Signature 500 is typically operated with

4 or 5 diverging beams, the comparable volume is less than 0.03 m3 because the individual

beams are relatively narrow. While cumulative sound exposure levels are only presented for

the most sensitive marine mammal hearing group, the supplemental material provided with

[11] can be used to calculate the cumulative sound exposure level for any of the five marine

mammal hearing groups at any point in the beam when surface reflections are negligible.

5.3.5 Audibility to Marine Mammals

Because the sound produced by these sonars is likely to be audible to marine mammals,

is it possible that behavioral changes could occur, even when SELcum is below the TTS

threshold. Consequently, if active acoustic sensors are used for environmental monitoring of

marine mammals, the potential for animal behavior to be affected by sonar emissions should

be considered during study design and when interpreting results.

Table 5.5 lists the maximum range at which a marine mammal from each hearing group

might be able to detect each sonar, given hearing thresholds and relatively low ambient

noise. The Gemini could be audible to high-frequency cetaceans up to a range of 108.5

meters, the longest range at which any of the tested sonars might be detectable by a marine
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Sensor

Low-

frequency

cetaceans

Mid-

frequency

cetaceans

High-

frequency

cetaceans

Otariid

pinnipeds

Phocid

pinnipeds

BlueView

(2250 kHz)
82.5 27.0 53.0 9.5 52.0

BlueView

(900 kHz)
41.0 12.0 34.0 3.5 14.0

Gemini 20.0 29.5 108.5 4.5 21.5

Signature

500
61.5 33.0 68.0 7.0 30.0

Table 5.5: Maximum range, in meters, at which a marine mammal from each hearing group
may be able to detect each sonar.

mammal. Counterintuitively, both BlueView transducers and the Signature 500 are audible

to low-frequency cetaceans at a longer range than to mid-frequency cetaceans, and, in the

case of the BlueView transducer, at a longer range than to high-frequency cetaceans. This

can be attributed to the peaks in source level observed at low frequencies (< 20 kHz) for

these transducers (see Figure 5.5). At these frequencies, the composite audiograms for low-

frequency cetaceans suggest a higher sensitivity than for mid-frequency or high-frequency

cetaceans. Further, for some hearing groups, the maximum range of audibility is similar

to, or exceeds, the functional range of some of the multibeam sonars. In other cases, the

maximum range of audibility is a small fraction of the sonar range.

These estimates are consistent with a previous study [27] which showed that harbor

porpoises (a high-frequency cetacean) changed their surfacing patterns in a pool when a

Gemini was operated, out to a range of 40 meters. Because audibility is necessary, but not

sufficient to cause behavioral change, the values in Table 5 should be taken as conservative

estimates of the maximum range for potential changes in behavior. Further, the ambient
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noise levels in coastal environments, such as a marine energy site, would likely be higher

than those considered here, resulting in reduced hearing ranges, and it is recommended

that a site-specific propagation be used to evaluate hearing ranges for specific conditions.

For example, [27] estimated that the Gemini could be audible to harbor porpoises (a high

frequency cetacean) to a range of only 60 meters at a tidal energy site.

5.4 Conclusions

The active acoustic transducers characterized in this study all have nominal operating fre-

quencies above 500 kHz. While all of the transducers produced out-of-band sound audible

by marine mammals (i.e., at frequencies less than 160 kHz) at some range, cumulative sound

exposure levels are unlikely to cause hearing threshold shifts for any marine mammal group.

If acoustic emissions could be a confounding factor for a behavioral study, it has been shown

that these may be decreased by adjusting the sonar operating mode. Overall, out-of-band

sound should be considered when sonars are used to study marine mammals, but the mea-

surements presented here show that these instruments should not raise regulatory concerns

under 2018 NMFS guidelines [45].
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Effective methods for environmental monitoring are essential to the continued sustainable

development of marine renewable energy. To be most effective, an environmental monitoring

platform must meet three directives: 1) do not bias the animals being monitored through

the use of sensors, 2) capture rare events, and 3) minimize the collection of data that does

not contain useful information. The work presented in this dissertation has demonstrated

that it is possible to develop an integrated instrumentation platform that simultaneously

meets all three of these directives. This is achieved through the development of automatic,

real-time data processing for multibeam sonars and careful analysis of the sensors used for

monitoring.

6.1.1 Benefits of Third Generation Integrated Instrumentation

In Chapters 3 and 4, it was demonstrated that it is feasible to develop a third generation inte-

grated instrumentation platform that meets all three directives of environmental monitoring,

and that the benefits of such a platform outweigh the costs. This was demonstrated using

the Adaptable Monitoring Package, an integrated instrumentation system that combines

active acoustic sensors, passive acoustic sensors, and optical cameras. Real-time detection

and tracking of targets in multibeam sonar data was used to limit data acquisition and the

use of artificial illumination to periods when targets were present (i.e., meeting directives 1,

2, and 3). This approach to data acquisition significantly reduced the volume of data that

was archived and subsequently reviewed by a human observer, while capturing an estimated

99% of targets of interest. As a result, it was possible to annotate a training data set for
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machine learning classification of the tracked targets with relatively little effort compared

to human review of continuously acquired data. Using these training data, a classification

model was able to distinguish between biological and non-biological targets with a 97% true

positive rate. This capability was demonstrated both in real-time and in post-processing.

The classification model was largely site-specific, and new training data were required for

effective classification at a second deployment site. However, when real-time target detection

and tracking are used to control data acquisition, it is relatively straightforward to build a

training data set for classification of targets in multibeam sonar data at a new marine energy

site. In practice, third generation instrumentation platforms like the Adaptable Monitoring

Package will enable effective collection of the data necessary to understand the environ-

mental risks of marine renewable energy (e.g., collision of marine fauna with marine energy

converters).

6.1.2 Audibility of Sonars to Marine Mammals

An in-depth analysis of the acoustic emissions of four active acoustic transducers used for

environmental monitoring was conducted in Chapter 5. All four transducers had nominal

operating frequencies well above the reported upper limit of marine mammal hearing (160

kHz), but were found to produce measurable sound below this limit. Acoustic emissions

within the range of marine mammal hearing were analyzed using the US National Marine

Fisheries Service technical guidance for assessing the effects of anthropogenic sound on ma-

rine mammals. It was found that while it is unlikely that any of the tested transducers will

cause hearing damage to any marine mammals, they could be audible for tens of meters, po-

tentially causing changes in animal behavior. Therefore, acoustic emissions from sonars with

operating frequencies above the range of marine mammal hearing should be considered when

conducting environmental monitoring of marine mammals, but should not be cause for reg-

ulatory concern. This evaluation provides the necessary foundation to develop an integrated

instrumentation platform that meets the first directive of environmental monitoring.
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6.2 Areas for Future Research

With the third generation capabilities developed in this thesis, the Adaptable Monitoring

Package provides a platform for countless areas of future research. While an exhaustive list

of potential applications of this system is not possible here, three possibilities are discussed

in this section.

6.2.1 Classification of Fish using Multibeam Sonars

An obvious gap in the work presented in Chapter 4 is the classification of individual fish in

multibeam sonar data. This was not possible at the Marine Science Laboratory (MSL) test

site because the resolution of the multibeam sonar was frequently not sufficient for a human

reviewer to distinguish individual fish from kelp, eelgrass, or other small objects in the water

column, and the relatively turbid water conditions prevented reliable concurrent detection

in the optical camera data. There are two possible approaches to obtain the data necessary

to train a model for classification of individual fish using the Adaptable Monitoring Package.

At a site where optical camera data is not reliable, like MSL, multibeam sonar data stream

could be fused with data from a traditional fisheries echosounder, a sensor for which there

are existing methods for fish detection and classification. Concurrent detection of fish on

the echosounder and multibeam sonar could be used to build a training data set for fish

classification in the multibeam sonar data. An echosounder has already been integrated into

the MSL-2 AMP, though the data stream has not yet been integrated into any real-time

processing modules. At a test site with high water clarity, such as the Wave Energy Test

Site in Hawaii, the same objective could be achieved through the fusion of the multibeam

sonar data with optical camera imagery. This approach would likely require more extensive

human review or algorithm development, because methods for detection and classification of

fish are relatively well established for echosounder data, but are active areas of research for

optical camera data.
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6.2.2 Removal of Sonar Artifacts

In Chapter 4, all non-biological targets are grouped into a single class. This includes targets

related to the environment, such as “clouds” of sediment or turbulent backscatter, as well as

artifacts of the multibeam sonar acoustic processing, such as high-intensity reflections that

appear around targets with a strong acoustic return. While this approach worked relatively

well, these two types of non-biological targets are fundamentally different, and false-positive

rates would likely decrease if they were treated separately. Sonar artifacts can also impede

target tracking when they are detected concurrently with targets of interest, reducing the

quality of the training data used for classification. Therefore, if these artifacts could be

removed before target detection and tracking, it would likely improve classification perfor-

mance. Potential approaches to this problem include building a model to predict the position

of sonar artifacts based on target position and intensity or using adaptive thresholding meth-

ods to remove artifacts that are lower intensity than the real target.

6.2.3 Animal Response to Active Acoustic Sensors

In Chapter 5, it was found that additional research is required to understand the potential

effects of sound produced by active acoustic sensors on marine mammal behavior. The

Adaptable Monitoring Package is an ideal platform to study these effects, because it enables

concurrent deployment of multiple active acoustic sensors and can be used to automatically

cycle their operation. For example, operation of the BlueView and Gemini multibeam sonars

could be alternated, and the operating multibeam sonar (e.g., BlueView) could be used to

observe any changes in marine mammal behavior that occur when the second multibeam

sonar (e.g., Gemini) is disabled. The target detection, tracking, and classification methods

described in this thesis could be used to rapidly quantify marine mammal presence, though

interpretation of results will require biological expertise. The results of such a study could

be used to inform selection of active acoustic sensors for environmental monitoring at marine

energy sites where marine mammals are expected to be present.
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Appendix A

FEATURES USED FOR TRACK CLASSIFICATION

The tables that follow list the 28 features used for classification of target tracks in Chapter

4.

Feature Abbv. Type Description

Extent E Shape 75th percentile of the extent of each target associ-

ated with the track. Extent is calculated to the

ratio of the total number of pixels in a target to

the area of the target bounding box.

Extent

Standard

Deviation

Estd Shape Standard deviation of the extent of each target as-

sociated with the track.

Solidity SO Shape 75th percentile of the solidity of each target asso-

ciated with the track. Solidity is calculated as the

ratio of the number of pixels in a target to the area

of the smallest polygon that can contain the target.

Equivalent

Diameter

ED Shape 75th percentile of the equivalent diameter of each

target associated with the track.
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Feature Abbv. Type Description

Axis Ratio AR Shape Mean of the ratio of the major axis length to the

minor axis length for each target associated with

the track.

Minor

Axis

Length

Min Shape 75th percentile of the minor axis length of each tar-

get associated with the track. Minor axis length is

defined as the length of the minor axis of the ellipse

that has the same second moments as the target.

Major

Axis

Length

Min Shape 75th percentile of the major axis length of each tar-

get associated with the track. Major axis length is

defined as the length of the major axis of the ellipse

that has the same second moments as the target

Area

Standard

Deviation

Astd Shape Standard deviation of the area of each target asso-

ciated with the track.

Maximum

Area

Amax Shape Maximum area of any target associated with the

track.

Direction

Changes

nDC Motion Number of times that the acceleration of the target

crosses zero.

Acceleration Acc Motion 75th percentile of the acceleration of the tracked

target.

Mean

Acceleration

Accmean Motion Mean acceleration of the tracked target.



112

Feature Abbv. Type Description

Distance

Traveled

Dtr Motion Point-to-point distance traveled by the target over

the duration of the target track

Change in

Orientation

Ostd Motion Standard deviation of the orientation of each target

associated with the track. Orientation is calculated

as the angle between the major axis and the x-axis

of the image.

Relative

Speed

dS Motion Average speed of the target relative to the current

speed.

Speed S Motion Average track speed. Track speed is by dividing

the distance traveled between every five targets as-

sociated with the target by the elapsed time.

Duration D Motion Duration of the target track.

Proximal

Targets

NR Image 75th percentile of the number of targets concur-

rently detected within a 1 meter radius of each tar-

get associated with a track.

Concurrent

Targets

N Image 75th percentile of the number of targets concur-

rently detected in the same image as each target

associated with a track.

Range R Image Average range from the sonar at which each target

associated with the track was detected.

Time T Env. Time of day when the target track was detected,

calculated as the number of hours from midnight

(e.g., both 11 PM and 1 AM give a value of 1).

Current

Direction

currDir Env. Direction of the tidal current at the time of detec-

tion, as measured by the AMP ADCP



113

Feature Abbv. Type Description

Current

Speed

currSpd Env. Magnitude of the horizontal velocity of the tidal

current at the time of detection, as measured by

the AMP ADCP

Color

Layout

Descriptor

CLD Intensity 75th percentile of each value of the 2x2 color layout

descriptor \cite{Kasutani2001} values for each tar-

get associated with the track. This feature results

in 4 separate feature vectors for each target track.

Weighted

Centroid

Offset

dC Intensity 75th percentile of the distance between the cen-

troid and weighted centroid of each target associ-

ated with a track. The weighted centroid is calcu-

lated based on the intensity of each pixel associated

with a target.

Intensity

Standard

Deviation

Istd Intensity Standard deviation of intensity values of all targets

associated with a track.

Intensity

Maximum

Imax Intensity Maximum intensity of any pixel in any target asso-

ciated with a track.

75th Per-

centile

Intensity

I Intensity 75th percentile of intensity values of all targets as-

sociated with a track
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Appendix B

FEATURE SELECTION ALGORITHM

The hill-climbing feature selection algorithm was implemented as follows:

1. Initialize an empty feature list.

2. Evaluate the performance of the classification model (Section 4.3.2) with each indi-

vidual feature added to the existing feature list. On the first iteration, classification

performance is tested for each candidate feature in isolation.

3. Add the candidate feature that produced the highest value of TPRbio in the test cases

to the feature list.

4. Return to step (2), and repeat steps (2) and (3) until all features have been added to

the list in a ranked order.

5. Select the subset of the feature list that yields the highest value of TPRbio (i.e., remove

features at the end of the sorted feature list if performance begins to degrade as more

features are added).

6. Test removal of each feature from the selected feature list to determine if higher per-

formance can be achieved. If removal of any single feature results in a higher value of

TPRbio, remove that feature from the feature list.

7. Repeat (5) until no features can be removed from the feature list without reducing

TPRbio.
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For the ensemble configurations of KNN and SVM, a separate feature list was produced

for each binary classification model. The hill-climbing algorithm was not implemented for

the SVM model with a polynomial kernel function, because this kernel function requires

more than one feature to operate.
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Appendix C

EXTENDED CLASSIFICATION RESULTS

Tables C.1, C.2, and C.3 list the full set of classification metrics for all k-nearest neighbors,

support vector machine, and random forest classification models that were tested in Chapter

4, respectively.
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k
Feature

Method
TPRbio TPRbin FPRbio TPRN TPRS TPRSm TPRB TPRF

Multiclass Models

3 All 0.8 0.97 0.22 0.78 0.83 0.91 0.7 0.83

3 Wrapper 0.86 0.98 0.22 0.78 0.91 0.83 0.87 0.83

3 Filter 0.67 0.96 0.22 0.78 0.57 0.78 0.65 0.74

5 All 0.8 0.96 0.26 0.74 0.83 0.87 0.67 0.83

5 Wrapper 0.83 0.97 0.39 0.61 0.87 0.83 0.83 0.83

5 Filter 0.71 0.97 0.17 0.83 0.65 0.83 0.61 0.74

7 All 0.78 0.95 0.22 0.78 0.83 0.87 0.65 0.83

7 Wrapper 0.86 0.98 0.26 0.74 0.87 0.83 0.87 0.87

7 Filter 0.71 0.97 0.17 0.83 0.65 0.87 0.61 0.74

Ensemble Models

3 All 0.8 0.95 0.24 0.76 0.85 0.78 0.7 0.83

3 Wrapper 0.89 0.97 0.17 0.83 0.91 0.87 0.78 0.96

3 Filter 0.77 0.96 0.22 0.78 0.74 0.83 0.7 0.83

5 All 0.77 0.96 0.26 0.74 0.78 0.87 0.61 0.78

5 Wrapper 0.88 0.97 0.17 0.83 0.87 0.89 0.78 0.96

5 Filter 0.79 0.96 0.22 0.78 0.78 0.78 0.74 0.83

7 All 0.79 0.97 0.3 0.7 0.83 0.89 0.65 0.83

7 Wrapper 0.89 0.98 0.26 0.74 0.87 0.87 0.83 1

7 Filter 0.76 0.97 0.17 0.83 0.7 0.87 0.7 0.83

Table C.1: Classification metrics for each KNN model that was evaluated.

.
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Appendix D

NEARFIELD CALCULATIONS FOR ACTIVE ACOUSTIC
SENSORS

The nearfield extent of a line array transducer (used in both the BlueView and Gemini

multibeam sonars) can be estimated by

r =
L2

λ
, (D.1)

where r is the extent of the nearfield, in meters, L is the length or aperture of the transducer,

in meters, and λ is the wavelength of the measured sound waves [42]. Substituting f = cλ,

where f is the measured frequency, in Hz, and c is the speed of sound, in m/s,

r =
L2f

c
, (D.2)

This equation is used to estimate the nearfield extent at both the transducer nominal oper-

ating frequency and the highest measured frequency (160 kHz) for the BlueView and Gemini

in Table D.2. For the Gemini, the manufacturer provided the nearfield extent estimate at

the nominal operating frequency rather than the transducer aperture. This value was used

to estimate the transducer aperture for the calculation at 160 kHz.

Medwin and Clay [42] also provide an estimate for the nearfield of a circular piston

transducer:

r =
πa2

λ
, (D.3)

which can be equivalently expressed as

r =
πa2f

c
. (D.4)
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Instrument Manufacturer

Provided

Information

Nearfield extent

at operating

frequency (m)

Nearfield extent

at 160 kHz (m)

BlueView (900 kHz) Transducer aperture,

L = 0.075 m

3.4 0.61

BlueView (2250 kHz) Transducer aperture,

L = 0.032 m

3.4 0.11

Gemini (720 kHz) Nearfield extends 5

m from transducer at

operating frequency

5 1.1

Signature (500 kHz) Circular piston

transducer with a =

0.033 m radius

1.2 0.37

Table D.1: Manufacturer provided information and calculation of nearfield extent estimations
for each transducer at its operating frequency and at the highest frequency reported in this
paper (160 kHz) based on [42].

The latter equation is used to estimate the nearfield of the Signature 500 in Table D.2. An

estimated speed of sound of 1486 m/s is used for all calculations. Because the nearfield

extent is proportional to the measured frequency, the nearfield extent for frequencies less

than 160 kHz will be smaller than the values reported in Table D.2.


