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Abstract 
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 Chair of the Supervisory Committee: 

Professor Brian Fabien 

Mechanical Engineering 

 

A lumped parameter model is developed to determine the equilibrium of a submerged 

body and mooring system under different stream flows and load conditions. An 

underwater turbine system is used as an example test problem. Determining 

equilibrium is important for systems such as underwater turbines because its position 

and orientation may affect its performance. The body is modeled as a rigid body and the 

mooring lines as multiple elastic line segments. All forces in the system including 

weight, buoyancy, drag, elastic stiffness and applied forces are modeled as conservative 

forces to find their potential energies. A stable equilibrium is solved for by minimizing 

the potential energy of the system. Matlab is used to solve the system by using 

optimization software and all code is included in the Appendix that a user can modify to 

model and solve their systems. Benchmark tests were run to validate the model and 

Matlab implementation against analytical solutions for an elastic catenary and a 2D 

rigid body rotation test. A series of test problems were run to observe trends when 

finding equilibrium of a system including varying the fluid velocity angle and variation 

in the location of the body’s center of mass (COM) and center of buoyancy (COB). 

Important observations include body rotation towards the oncoming fluid flow for the 

example system considered and body rotation if the COM or COB is not centered 

relative to a symmetric mooring system. 

 



 
 

 

 

 



 
 

i 
 

Contents 
List of Figures ................................................................................................................................................. iv 

List of Tables ................................................................................................................................................... vi 

1 Introduction ............................................................................................................................................ 1 

1.1 Motivation and Objectives ........................................................................................................ 1 

1.2 Approach and Methodology ..................................................................................................... 2 

1.3 Literature Review ......................................................................................................................... 3 

2 Modeling of the Body and Mooring Line Kinematics .............................................................. 7 

2.1 Rigid Body Kinematics ............................................................................................................... 7 

2.2 Mooring Line Kinematics ....................................................................................................... 11 

3 Modeling of the Loads and Potential Energies ....................................................................... 13 

3.1 Approach....................................................................................................................................... 13 

3.2 Mooring Line Buoyancy and Weight .................................................................................. 13 

3.3 Body Buoyancy and Weight................................................................................................... 15 

3.4 Slack Mooring Model ................................................................................................................ 16 

3.5 Drag on the Mooring Lines .................................................................................................... 18 

3.6 Drag on the Body ....................................................................................................................... 20 

3.7 Applied Body Loads .................................................................................................................. 22 

4 Benchmark Tests ................................................................................................................................ 23 

4.1 Elastic Catenary and Error Rate of Convergence .......................................................... 23 

4.2 Rigid Body Rotations and Stable Equilibrium ................................................................ 27 

4.3 Slack and Ground Constraints .............................................................................................. 31 

5 Test Problems ...................................................................................................................................... 35 

5.1 Iterative Solutions and Drag Forces ................................................................................... 35 

5.2 Varying Fluid Velocity Angle ................................................................................................. 46 



 
 

ii 
 

5.3 Sensitivity to Variation in the Location of the COM and COB ................................... 51 

6 Matlab Implementation and Solver ............................................................................................. 58 

7 Future Work ......................................................................................................................................... 61 

References ..................................................................................................................................................... 62 

Appendix 1 – Example of a Body and Multiple Mooring Line System Setup Script .......... 64 

Appendix 2 – Sys_test.m – Basic Body and Mooring Line Test Setup ..................................... 68 

Appendix 3 – Catenary_test.m – Elastic Catenary Test Setup .................................................... 71 

Appendix 4 – Catenary_Solu.m – Analytical Catenary Solution Equations ........................... 76 

Appendix 5 – RigidBody_test.m – Rigid Body Rotation Test Setup ......................................... 77 

Appendix 6 – RigidBodyfuns.m – Analytical Rigid Body Rotation Equilibrium Equations

 ............................................................................................................................................................................ 80 

Appendix 7 – FluidVelocity.m – Fluid Velocity Profile Functions ............................................ 81 

Appendix 8 – newBody.m – Body Class .............................................................................................. 82 

Appendix 9 – newLine.m – Mooring Line Class ............................................................................... 87 

Appendix 10 – SegCenters.m – Calculate Center of Line Segments ......................................... 91 

Appendix 11 – EquilSolver.m – Equilibrium Solver, fmincon Parameters and Constraints 

Setup ................................................................................................................................................................ 92 

Appendix 12 – PlotSolu.m – Makes a 3D Plot of the Body and Mooring Lines .................... 95 

Appendix 13 – PlotDrag3D.m – Makes a 3D Plot of the Body and Mooring Line Drag 

Forces .............................................................................................................................................................. 96 

Appendix 14 – SysUpdate.m – Updates System’s Drag Forces .................................................. 97 

Appendix 15 – SysRefine.m – Updates System’s Drag Forces and Doubles the Number of 

Mooring Line Segments ............................................................................................................................ 98 

Appendix 16 – EquilSolver2D.m – 2D Equilibrium Solver, fmincon Parameters and 

Constraints Setup ...................................................................................................................................... 100 



 
 

iii 
 

Appendix 17 – PlotSolu2D.m – Makes a 2D Plot of the Mooring Lines ................................ 103 

Appendix 18 – SegTensions.m – Calculates Tension Forces in Mooring Line Segments

 .......................................................................................................................................................................... 104 

Appendix 19 – Txyz.m – Calculates the Euler XYZ 3D Rotation Transformation Matrix

 .......................................................................................................................................................................... 105 

 

  



 
 

iv 
 

List of Figures 

Figure 1.1 Concept image of ORPC’s OCGenTM system, submerged body and mooring line 

system example (1) ....................................................................................................................................... 2 

Figure 2.1 Inertial and body-fixed coordinate systems .................................................................. 8 

Figure 2.2 Euler rotations of intermediate frames ........................................................................ 10 

Figure 2.3 Mooring line segments and nodes .................................................................................. 12 

Figure 3.1 Segment center of mass and net buoyant and gravity force ................................. 14 

Figure 3.2 Gravity and buoyant forces on the body....................................................................... 15 

Figure 3.3 Segment with stiffness ......................................................................................................... 16 

Figure 3.4 Segment with stiffness forces ........................................................................................... 17 

Figure 3.5 Stream velocity on line segment ...................................................................................... 18 

Figure 3.6 (a) Segment unit vectors; (b) Segment dimensions and relative fluid 

velocities ......................................................................................................................................................... 19 

Figure 4.1 Elastic catenary setup .......................................................................................................... 23 

Figure 4.2 Elastic catenary analytical and minimized solution using 5 line segments .... 25 

Figure 4.3 Catenary errors versus number of line segments ..................................................... 26 

Figure 4.4 (a) Rigid body test setup; (b) Deformed shape and coordinate system........... 27 

Figure 4.5 Stable numerical and unstable analytical solutions of rigid body test ............. 29 

Figure 4.6 Undeformed and stable equilibrium positions of rigid body test ....................... 30 

Figure 4.7 Slack test setup ....................................................................................................................... 31 

Figure 4.8 Plots of the elastic lines of the slack test solution ..................................................... 33 

Figure 5.1 Test system mooring line and fluid velocity setup ................................................... 36 

Figure 5.2 First solution and segment drag forces ........................................................................ 40 

Figure 5.3 Second solution and segment drag forces ................................................................... 40 

Figure 5.4 Third solution and segment drag forces ....................................................................... 41 

Figure 5.5 Fourth solution and segment drag forces .................................................................... 41 

Figure 5.6 First solution ........................................................................................................................... 42 

Figure 5.7 Second solution ...................................................................................................................... 42 

Figure 5.8 Third solution ......................................................................................................................... 43 

Figure 5.9 Fourth solution ....................................................................................................................... 43 



 
 

v 
 

Figure 5.10 Perspective of fourth solution ....................................................................................... 44 

Figure 5.11 2D model of tension forces on the body .................................................................... 44 

Figure 5.12 Body’s position and displacement versus velocity angle .................................... 47 

Figure 5.13 Body’s Euler angles versus velocity angle................................................................. 47 

Figure 5.14 Front view of equilibrium solution,              ..................................... 49 

Figure 5.15 Top view of mooring line #2 near its ground attachment point ...................... 51 

Figure 5.16 Change in body’s position and Euler angles due to variation of body’s COM

 ............................................................................................................................................................................ 55 

Figure 5.17 Change in body’s position and Euler angles due to variation of body’s COB

 ............................................................................................................................................................................ 56 

Figure 5.18 Equilibrium position due to    variation in body’s COM .................................... 57 

Figure 5.19 Equilibrium position due to    variation in body’s COB..................................... 57 

 

  



 
 

vi 
 

List of Tables 

Table 4.1 Slope of catenary errors on log-log scale, between N=5 and N=20 ..................... 26 

Table 4.2 Rigid body rotation errors ................................................................................................... 30 

Table 4.3 Line segment tensions (N) from slack test solution .................................................. 34 

Table 5.1 System constant properties ................................................................................................ 37 

Table 5.2 Body properties ....................................................................................................................... 37 

Table 5.3 Mooring Line properties ....................................................................................................... 38 

Table 5.4 Mooring Line attachment points ....................................................................................... 38 

Table 5.5 Body’s COM position and Euler angles,             ...................................... 42 

Table 5.6 Mooring line segment tensions at body (N) .................................................................. 45 

Table 5.7 Tension forces on body for 2D model (N) ..................................................................... 45 

Table 5.8 Body’s COM position and Euler angles for varying fluid velocity angles ........... 48 

 

  



 
 

vii 
 

Acknowledgements 

I would like to thank my advisor, Brian Fabien, for giving me the opportunity and 

support to work on this project. His guidance, teaching and support of my work on this 

project have shown me what I can accomplish. I would also like to thank the rest of my 

committee for their useful edits and comments about this thesis to help make it a 

stronger work. I want to thank the Northwest National Marine Renewable Energy 

Center (NNMREC) for their pursuit and support of renewable energy projects that pave 

the way in this very important field. Lastly, I want to give a big thank you to my family 

for their endless support during my continued education which has allowed me to focus 

on my education and work. 

 





 
 

 





 
1 
 

 
 

1 Introduction 

1.1 Motivation and Objectives 

Renewable energy is a growing industry and research field. Renewable energy 

technology, such as underwater in-stream turbines, uses a turbine and generator to 

convert the power of streams or tidal flows to electricity. Most turbines deployed to 

date use a fixed structure to secure the turbine to a seabed or riverbed, though another 

design is to make the turbine structure buoyant and secure it to the seabed with 

mooring lines. These moored systems require a complicated dynamic and static 

analysis of the system. A static analysis is important to find equilibrium of the system 

that may be used to determine such things as the role orientation plays in the 

performance of the turbine. 

For deep water applications, submerged bodies like Ocean Renewable Power 

Company’s (ORPC) OCGenTM system design are proposed to be secured to the sea floor 

with multiple mooring lines (see Figure 1.1) (1). Finding the equilibrium will show the 

position and orientation of the system subjected to different stream flows and load 

conditions. The orientation of the system is important because the efficiency or power 

performance of a turbine may greatly depend on its orientation relative to the stream 

velocity. One application is to use the equilibrium position to find an optimum 

configuration of the system’s mooring lines to achieve a desired position or orientation 

of the body to maximize performance. 

The objectives of this work are as follows: 

 Develop a lumped parameter model to describe a submerged rigid body with 

multiple mooring lines and derive the potential energy equations used to 

determine stable equilibrium positions. Equilibrium is found directly and the 

dynamics of the system is not considered in the scope of this work. 

 Develop Matlab code to solve the equilibrium equations and act as a user 

interface to the modeling and analysis code. 
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Figure 1.1 Concept image of ORPC’s OCGenTM system, submerged body and mooring 
line system example (1) 

 

1.2 Approach and Methodology 

A stable equilibrium of the system will be found by minimizing the potential energy of 

the system. Lagrange’s theorem of stability states: If the potential energy has an isolated 

minimum in the equilibrium position, then the equilibrium is stable (2). The 

equilibriums will be solved for numerically by using optimization tools provided in the 

Matlab software package. 
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The system will be modeled as follows: 

1. Six-degree of freedom rigid body: three translational and three rotational 

degrees of freedom. 

2. Mooring lines: The mooring lines will be modeled as unidirectional elastic 

springs (the mooring lines are allowed to be slack). Each mooring line will be 

divided into multiple segments. 

3. Lumped parameters: The body and line segments will be described with lumped 

parameters including weight, buoyancy, drag, applied forces to the body and 

stiffness for the line segments. 

The system will be analyzed as follows: 

1. The system will be modeled with conservative forces to develop the potential 

energy equations to be solved for stable equilibrium. 

2. Matlab script will be written to calculate the equations and use optimization 

software to solve for stable equilibrium positions. Another important aspect of 

the software development is to provide a simple user interface to the modeling 

and analysis code. 

3. A series of benchmark problems will be used to validate the modeling approach 

and Matlab code implementation against analytical solutions for an elastic 

catenary and a 2D rigid body rotation test. 

4. A series of test problems will be run to observe any important trends when 

finding equilibrium of a system including varying the fluid velocity angle and 

variation in the location of the body’s center of mass and center of buoyancy. 

1.3 Literature Review 

Moored systems of cables and attached bodies provide many interesting and 

challenging modeling problems. Irvine (3) provides analysis and examples of many 

different types of cable structures. A lot of research in this area focuses on the dynamics 

of the cables and attached bodies. Some analysis use differential equations to describe 
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the mooring system. The work of Leonard et al (4) models an uncoupled three-

dimensional analysis of a floating buoy and its mooring, with the buoy and mooring 

problems solved separately which are coupled together by constraining the solutions at 

the attachment point of the mooring and buoy. The work of Tjavaras et al (5) models 

the mechanics of highly extensible cables and can model the dynamics of a near-surface 

buoy. This work includes modeling bending stiffness in the lines to ensure the problem 

is solvable with small tension forces. 

Other methods to avoid modeling the mooring lines with differential equations or 

problems with low tension include modeling the lines as lumped springs and masses. 

The work by Huang (6) uses a lump-mass-and-spring model to describe the three-

dimensional dynamics of mooring lines. The work of Raman-Nair and Baddour (7) uses 

a lumped mass-spring model to describe the three-dimensional dynamics of a buoy 

with multiple mooring and is discussed further below. 

There are works that model systems of submerged bodies and multiple mooring lines 

but are different than the modeling approach and applications considered in this work 

in a few key areas. Major differences include how equilibrium is solved for, how 

constraints such as line slack and touchdown are handled and how the attached body is 

modeled. The current implementation of this work is suited to model the equilibrium of 

systems of a single rigid body attached to multiple mooring lines at different locations, 

and the differences or limitations of other work to model such systems is discussed 

below. 

The work of Raman-Nair and Baddour (7) uses Kane and Levinson’s (8) dynamic 

formulism as a base to model the three-dimensional dynamics of a subsurface buoy and 

multiple mooring lines. Their model uses a lumped mass-spring model for the mooring 

lines. To model the mooring line’s interaction with the ground a normal reaction force 

from the seabed is applied to the lines at touchdown. This reaction force is directly 

proportional to the penetration into the seabed, acting like a linear spring. Touchdown 

is modeled differently in this work than theirs. Instead of modeling additional forces to 
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the system, constraints are applied directly to the displacement variables of the system. 

To model a flat seabed the vertical component of every mooring line node is 

constrained to be greater than or equal to the elevation of the seabed, so the mooring 

lines must either be above or lie flat on the seabed. 

To model slack in the mooring lines (to only support tension and not compression), 

Raman-Nair and Baddour define the elongation of a segment in a way such that if the 

length of the segment becomes less than its unstretched length, the elongation equals 

zero and the resulting tension force due to stiffness is zero (7). The slack constraint in 

our work constrains the coordinates of the mooring line nodes such that the length of 

each line segment must be greater than or equal to its unstretched length (see section 

3.4). 

To find equilibrium of a system, Raman-Nair and Baddour solve the system for a long 

simulation time so the system approaches its equilibrium position (7). Our work finds a 

stable equilibrium of the system directly without a dynamic analysis (see sections 1.2 

and 3.1). 

A software program has been developed at the Woods Hole Oceanographic Institution 

(WHOI) called WHOI Cable (9), based on the works of Gobat and Grosenbaugh, et al 

(10), (11). This program solves two and three-dimensional mooring systems for either 

dynamic or equilibrium (or steady-state) solutions, including towing and drifting 

problems. WHOI Cable allows for various connectors, branches, buoys and anchors to 

be added to a mooring line. The program uses governing differential equations 

developed in the works by Gobat (11) and Tjavaras (12) which are solved for 

numerically by the program (10).  Touchdown of the cables on the seabed is modeled as 

a linear elastic foundation as well, and bending stiffness is included in the lines to avoid 

singularities with slack tension. 

Other differences between WHOI Cable and this work include how bodies (or buoys) 

are attached and modeled in the system. WHOI Cable attaches cables to a buoy at a 
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single point, while this work allows any number of mooring lines to be attached at 

different locations to the same body. WHOI Cable does not model the rigid body 

dynamics of an attached body and the coefficients of drag for a buoy are defined in 

normal and tangential directions, while the coefficients of drag in this work are defined 

along the three body-fixed axis and rigid body rotations of the body are modeled. 
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2 Modeling of the Body and Mooring Line Kinematics 

2.1 Rigid Body Kinematics 

The coordinate systems are chosen in a way to easily keep track of all points of interest 

and forces in the system. An inertial frame is used to conveniently describe the whole 

system relative to a fixed location such as the seabed. A coordinate system that moves 

and rotates with the body (body-fixed frame) is used to easily describe points fixed to 

the body. The body is modeled as a rigid body, meaning all points fixed to the body do 

not move relative to each other. This provides a convenient way to describe body-fixed 

points in the inertial frame even after complicated movements and rotations of the 

body. 

A fixed rectangular coordinate system, denoted by      , with origin   on the 

seabed is used as an inertial reference frame.  A body-fixed rectangular coordinate 

system with origin    located at the body’s center of mass (COM) is denoted         . 

The coordinate systems are displayed in Figure 2.1. 

The rigid body is modeled with six degrees of freedom (DOF) that includes three 

translational DOF and three rotational DOF: 

 Position of the center of mass in the inertial frame  ̅   [
 
 
 
] 

 Rotation angles of the body       

The three rotation angles,      , are used to completely described the body’s rotation 

in 3-dimensional space. The body’s final rotation is found by three successive rotations 

about an axis in the body-fixed frame. These angles are known as Euler angles. 
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Figure 2.1 Inertial and body-fixed coordinate systems 
 

Intermediate frames are used to follow the rotations and describe how a rotated 

reference frame is related to the initial reference frame. The coordinates of a point 

 ̅  [           ]
 

 in the rotated frame          can be written in the coordinates 

 ̅  [           ]
 

 relative to the initial frame         .  ̅  can be found from the 

transformation 

  ̅    ̅  (2.1) 

where   is a rotation transformation matrix.  

 

 

 

𝑿 

𝒀 

𝒁 

𝒙  

𝒚  

𝒛  

𝒐  

Seabed 𝑶 

�̅�𝒐  

Body 



 
9 
 

 
 

For rotation about an axis,   has the following forms: 

 Rotation of   about the x axis,    [
   
      

     

] 

 Rotation of   about the y axis,    [

     

   
      

] 

 Rotation of   about the z axis,    [

      

     

   

] 

where                  

To describe the rotation of a body in 3-dimensions we will use three successive 

rotations about the x, y then z-axis of the intermediate frames. Starting with the origin 

of the body-fixed frame          coincident and aligned with the inertial reference 

frame       (Figure 2.2a), rotate   about the    axis (Figure 2.2b). The 

intermediate frame becomes         . Then rotate   about the    axis and the 

intermediate frame becomes          (Figure 2.2c). Finally, rotate   about the    

axis and the final rotation of the body is aligned with the          frame (Figure 

2.2d). 

A vector  ̅  in the inertial frame can be found from a vector  ̅  in the body-fixed frame 

with the transformation 

  ̅    ̅  (2.2) 

 

         [

           

                            

                           

] (2.3) 

The transformation matrix   uses the 1-2-3 (or XYZ) Euler angle convention. 
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Figure 2.2 Euler rotations of intermediate frames 
  

Coordinates in the body-fixed frame are written with a prime and coordinates in the 

inertial frame (ground, or fixed frame) are written without a prime. 

An arbitrary point on the body with body-fixed coordinates  ̅  [           ]
 

 then has 

the following coordinates with respect to ground  ̅   [        ]
 : 

  ̅   ̅     ̅  (2.4) 

A vector in a rotated frame can be found from the vector in the fixed frame by applying 

the inverse of the rotation matrix. The inverse of a rotation matrix is equal to its 

transpose and the inverse of the 1-2-3 transformation matrix is 

 

       [

                           

                            

           

] (2.5) 

𝑿 

𝒀 

𝒙𝒂 𝒚𝒂 

𝒛𝒂 

𝒙𝒃 

𝒙𝒂 
𝒚𝒂 

𝒛𝒂 
𝒚𝒃 

𝒛𝒃 

𝜶 

𝜶 

𝒙𝒃 

𝒚𝒃 

𝒛𝒃 

𝒙𝒄 

𝒚𝒄 
𝒛𝒄 

𝜷 

𝜷 
𝒙𝒄 

𝒚𝒄 𝒛𝒄 
𝒛𝟏 

𝒙𝟏 

𝒚𝟏 

𝜸 

𝜸 

(a) (b) 

(c) (d) 
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A vector  ̅  in the body-fixed frame can be found from a vector  ̅  in the inertial frame 

with the transformation 

  ̅     ̅  (2.6) 

2.2 Mooring Line Kinematics 

The mooring lines are modeled as unidirectional elastic springs with lumped 

parameters including stiffness, weight, buoyancy and drag forces. The system will be 

modeled with   mooring lines and each line divided into    segments using nodes  ̅    

with              (see Figure 2.3). The mooring lines are divided into multiple 

segments to accurately describe how the line bends or becomes slack under load. The 

coordinates of a node in the inertial frame is   ̅    [                    ]
 

. 

If a node is attached to the body its coordinates are determined by the body’s position 

and rotation. Let  ̅     denote the coordinates of the attachment point for the     

mooring line on the body in the body-fixed frame. The coordinates of node 0 in the 

body-fixed frame are  ̅     [                       ]
 

. The coordinates of node 0 in the 

inertial frame are 

  ̅     ̅     ̅     (2.7) 

Note that there are three degrees of freedom per node. However, if a node is attached to 

the body then the degrees of freedom associated with that node are determined by the 

equation above and therefore shares the same degrees of freedom as the body. 
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Figure 2.3 Mooring line segments and nodes 
 

Figure 2.3 shows an example of the mooring line segments and node convention. The  

 ̅    node is attached to the body and the  ̅    
 node is attached to the seabed. 

Each mooring line will have    degrees of freedom, where 

     (    )            (2.8) 

Each mooring lines has (    ) nodes. Three degrees of freedom are subtracted for the 

first node fixed to the body and another three degrees of freedom are subtracted for the 

last node fixed to the seabed. 

  

�̅�𝒊 𝟎 

�̅�𝒊 𝟏 

�̅�𝒊 𝟐 

�̅�𝒊 𝟑 

�̅�𝒊 𝑵𝒊−𝟐 

�̅�𝒊 𝑵𝒊−𝟏 

�̅�𝒊 𝑵𝒊  
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3 Modeling of the Loads and Potential Energies 

3.1 Approach 

Lumped parameters and forces are used to easily describe and keep track of the forces 

on the system. All forces are modeled to be conservative (the work done by the force is 

path-independent) in order to find their potential energy used to solve for equilibrium. 

The potential energy   of a conservative force   is defined as 

 
 ( )   ∫ ( )     (3.1) 

where   is a displacement variable (2). The total potential energy of the system is then 

found by summing the potential energy of every force in the system. The total potential 

energy equation is minimized to find a stable equilibrium of the system. 

3.2 Mooring Line Buoyancy and Weight 

In this model the mass of the mooring line is distributed uniformly at the center of each 

segment (see Figure 3.1). For example, the     segment of the     mooring line will have 

mass                . The     segment is defined by nodes  ̅      and  ̅   . The mass 

of the segment is lumped at its center  ̅   . The coordinates of the center are determined 

by consecutive nodes as 

 
 ̅    

 

 
( ̅       ̅   ) (3.2) 

 



 
14 

 

 
 

 

Figure 3.1 Segment center of mass and net buoyant and gravity force 
 

Let    denote the free (unstretched) length of the     mooring line. Let    denote the 

linear density (mass per unit length) of the     mooring line. The mass of the     

segment is            , where      is the unstretched length of the     segment. Note 

that      is not the instantaneous length of the segment, (     | ̅     ̅     |), because 

the length can vary with time if the mooring line stretches. 

The buoyant and gravity forces only act in the vertical direction, which is along the Z 

axis in the fixed frame. The net force of the buoyant and gravity forces acting on the     

segment of the     mooring line with respect to the fixed frame is 

  ̅    [          ]
 

 (3.3) 

The Z component of the net force is 

                       (3.4) 

where   is acceleration due to gravity,    is the fluid density and      is the volume of 

the     segment of the     mooring line. This net force acts at the segment’s center of 

mass (see Figure 3.1). 

The potential energy of the net buoyant and gravity force on each segment is 

  ( ̅   )                (3.5) 

�̅�𝒊 𝒋 𝟏 

�̅�𝒊 𝒋 

�̅�𝒊 𝒋  𝒎𝒊 𝒋 

�̅�𝒊 𝒋 
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3.3 Body Buoyancy and Weight 

The force due to gravity acts at the center of mass (COM) of the body which is the origin 

o’ in the body-fixed frame. Recall that the position of o’ in the inertial frame is 

 ̅   [     ] . The buoyant force acts the body’s center of buoyancy (COB). The location 

of the COB in the body-fixed frame is  ̅   [           ]
  (see Figure 3.2). The COB in 

the inertial frame is 

  ̅   ̅     ̅   (3.6) 

 

Figure 3.2 Gravity and buoyant forces on the body 
 

The force due to gravity in the inertial frame is  ̅   [      ] , where   is the mass 

of the body.  

The potential energy of the weight of the body is 

  ( ̅  )      (3.7) 

 

where   is the Z component of  ̅  . 

The buoyancy force on the body is  ̅  
 [            ]

 
, where       is the volume of 

the body. 

The potential energy of the buoyancy force on the body is 

𝒙  

𝒚  

𝒛  

𝒐  �̅� 𝒃 

�̅�𝒄𝒃  

�̅�𝒐  



 
16 

 

 
 

  ( ̅  
)                (3.8) 

 

where      is the Z component of  ̅ . 

3.4 Slack Mooring Model 

Each segment of the mooring line is modeled as a spring that applies a force only if the 

segment elongates relative to its unstretched length (see Figure 3.3). The stiffness of the 

    segment of the     mooring line is 

 
     

        

    
 (3.9) 

 

     is the modulus of elasticity,      is the effective cross-sectional area and      is the 

unstretched length of the segment. 

 

Figure 3.3 Segment with stiffness 
 

A segment is defined as a line between two adjacent nodes, written as  ̅     ̅     ̅     . 

The length of the segment is the magnitude of this line: 

 
     | ̅   |  √      

        
        

  (3.10) 

where                       , etc. 

�̅�𝒊 𝒋 𝟏 

�̅�𝒊 𝒋 

𝑲𝒊 𝒋 
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The lines are modeled to only support tension forces when the segment is stretched and 

not compressive forces or allow the line to be compressed, instead the line becomes 

slack. To model slack and only tension forces the change in length of the segment is 

constrained to be greater than or equal to zero:  

                   (3.11) 

When a segment is elongated there are reaction forces at each node that point inwards 

along the segment (see Figure 3.4). 

 

Figure 3.4 Segment with stiffness forces 
 

The spring force at each node acts along the line of the segment, in the same direction 

as the segment’s unit vector. The unit vector in the direction from  ̅      to  ̅    is the line 

vector divided by its magnitude: 

  ̂     ̅       ⁄  (3.12) 

The force at node  ̅    due to the extension of the segment is then 

  
   

                ̂    (3.13) 

The force at node  ̅      is 

�̅�𝒊 𝒋 𝟏 

�̅�𝒊 𝒋 
�̂�𝒊 𝒋 

𝒇
𝒊 𝒋

𝑲𝒊 𝒋
 

𝒇
𝒊 𝒋 𝟏

𝑲𝒊 𝒋
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               ̂    (3.14) 

The potential energy from the stiffness of each segment is 

 
 (    )  

 

 
         

  (3.15) 

 

3.5 Drag on the Mooring Lines 

The drag forces from the fluid velocity are modeled to act on the center of each segment 

of the mooring lines. The magnitude of the drag force can be found from the equation of 

the form 

 
   

 

 
        (3.16) 

 

where    is the fluid density,    is the coefficient of drag,   is the reference area and   

is the speed of the object relative to the fluid. In equilibrium the velocity of each object 

is zero and therefore   is equal to the speed of the fluid.  

To model drag as a conservative force it is modeled as a constant force (with constant 

magnitude and direction) applied to the system. Because the drag forces depend on the 

system’s orientation relative to the fluid velocity, drag forces are updated between 

iterative solutions as discussed in section 5.1  

 

Figure 3.5 Stream velocity on line segment 

�̅�𝒊 𝒋 𝟏 

�̅�𝒊 𝒋 

�̅�𝒊 𝒋 

�̅�𝒊 𝒋 
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The velocity of the fluid on each segment’s center is denoted  ̅    (Figure 3.5). 

Depending on the orientation of the segment relative to the stream velocity, the fluid 

flows over different areas of the segment. In particular, part of the fluid can flow across, 

or perpendicular, to the segment and part of the fluid can flow along, or parallel, to the 

segment. The relative fluid velocity can be written in terms of its components parallel 

and perpendicular to the segment as 

  ̅         ̂         ̂    (3.17) 

 

where  ̂    is the unit vector in the direction from  ̅      to  ̅   , and  ̂    is the unit vector 

perpendicular to the segment (see Figure 3.6a). 

  

(a) (b) 

Figure 3.6 (a) Segment unit vectors; (b) Segment dimensions and relative fluid 
velocities 

 

The coefficient      is the speed of the fluid velocity parallel to the segment and is found 

by the equation 

       ̅     ̂    (3.18) 

 

Because the magnitude of the relative velocity is | ̅   |  √    
      

 , the coefficient      

can be found from the equation 

𝒂𝒊 𝒋 
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     √| ̅   |

 
     

  (3.19) 

The unit vector  ̂    is then 

 
 ̂    

 

    
( ̅         ̂   ) (3.20) 

The area of the segment projected in the  ̂    direction (see Figure 3.6b) is 

   ̂   
          (3.21) 

where      is the diameter of the segment. 

The area of the segment projected in the  ̂    direction (surface area, see Figure 3.6b) is 

   ̂   
           (3.22) 

 

The drag force acting on the segment is approximated as 

 
 ̅      

 

 
     ̂  ̂   

    |    | ̂    
 

 
     ̂  ̂   

    |    | ̂    (3.23) 

 

where    ̂ and    ̂ are the coefficients of drag in the parallel and normal directions 

respectively.  

The potential energy of the drag force on each segment is 

  ( ̅     )                                                (3.24) 

 

3.6 Drag on the Body 

The drag forces on the body are found in a similar way to that on the mooring lines with 

the same form as Equation 3.16.  The fluid velocity is first found in terms of the body-
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fixed coordinates to find the drag forces in the body-fixed frame. The drag forces are 

then transformed into the inertial frame coordinates.  

The fluid velocity in the vicinity of the body’s center of mass in the inertial frame is 

denoted  ̅   . The fluid velocity in the body-fixed frame is 

  ̅   
     ̅    (3.25) 

The drag on the body in the body-fixed frame is approximated as 

 

  ̅     [

       

       

       

]    

        
 

 
                 |      |

        
 

 
                 |      |

        
 

 
                 |      |

 (3.26) 

                – Coefficient of drag in the   ,    and    directions respectively 

                   – Effective surface areas in the   ,    and    directions 

respectively 

Note that the reference areas used in the body drag force equations are referred to as 

effective surface areas. This is because the drag coefficients and reference areas depend 

on how the drag forces are found and the effective surface areas may not be a projected 

area of the body. For modeling purposes the drag coefficients or the effective surface 

areas can be changed to achieve a desired drag force. 

The drag force on the body in the inertial frame is 

  ̅        ̅     (3.27) 

The potential energy of the drag force on the body is 

  ( ̅    )                           (3.28) 
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3.7 Applied Body Loads 

This model allows for constant forces and torques to be applied to the body. Examples 

of applied body loads could be forces or torques on the body due to the rotation or 

operation of the turbine and generator. The potential energy of the applied body force 

is 

  ( ̅    )                           (3.29) 

The potential energy of the applied torque in the body-fixed frame (  ̅        ̅    ) is 

  (  ̅    )                              (3.30) 
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4 Benchmark Tests 

For all test problems the tolerance on the objective function, constraints and variables 

specified for the Matlab minimization function fmincon were set to their default values 

of     . 

4.1 Elastic Catenary and Error Rate of Convergence 

To test the accuracy of the profile of a suspended elastic cable the minimized 

equilibrium solution was compared to an analytical solution given by Irvine (3).  For 

easier application the solution can be rewritten for the case where one end of the cable 

is fixed at the origin and a horizontal and vertical force are applied at the other end (7), 

(Figure 4.1). 

 

Figure 4.1 Elastic catenary setup 
 

The solutions for the   and   profile of the cable as a function of the unstretched arc 

length   using the setup shown are then (7) 
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(4.2) 

 

  is the elastic modulus,    cross-sectional area,    unstretched line length,   mass per 

unit length of the line,   gravity,   applied horizontal force and   applied vertical force. 

The catenary test problem was setup with the following properties:         , 

                      ,         ,          ⁄ ,        and       . 

The initial displacements for the minimization solution were defined by creating a line 

from the origin to the coordinates (8 m, 6 m), near the equilibrium of the free end based 

on the analytical solution, and dividing the line into 5 equal segments. The solution 

using 5 segments was used to double the number of segments of the line by using the 

coordinates of the nodes and segment centers as the new initial node coordinates for a 

solution using 10 segments. Each successive solution used the previous solution as 

initial coordinates to double the number of nodes used until the problem was solved 

using 40 line segments. The analytical and minimized solutions of the catenary test are 

shown in Figure 4.2. 

The error between the minimized and analytical solutions was calculated by comparing 

the coordinates of the line nodes to the analytical solution at the corresponding 

unstretched arc length. The error is calculated as the difference between the analytical 

solution and the minimized solution. 
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Figure 4.2 Elastic catenary analytical and minimized solution using 5 line segments 
 

The 2-norm and the infinite-norm of the   and   components of the errors were found. 

The elastic catenary errors are plotted in Figure 4.3a and on a log-log scale in Figure 

4.3b. The 2-norm and infinite-norm of the   component errors are labeled Xe2 and 

XeInf respectively, for example.  Table 4.1 lists the slopes of the catenary errors 

calculated between N=5 and 20 segments, using the log(Error) versus the log(N). The 

slopes on the log-log scale give the exponent on N and describe how the error varies 

with the number of line segments. For 5, 10 and 20 segments the infinite-norm error 

decreases on the order near    ⁄ and the 2-norm error near      ⁄ , seen as close to 

straight lines on the log-log scale. At 40 segments the errors start to level out on the log-

log scale and do not follow the trend as closely. The error could be limited by the 

tolerance set on the solver fmincon. 
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(a) Catenary errors 

 

(b)  Catenary errors, log-log scale 
Figure 4.3 Catenary errors versus number of line segments 

 

Table 4.1 Slope of catenary errors on log-log scale, between N=5 and N=20 
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4.2 Rigid Body Rotations and Stable Equilibrium 

To test large rigid body rotations, the minimized equilibrium solution was compared to 

an analytical solution of a 2D problem. The test problem consists of a rigid body of 

width   attached to two linear springs at its ends. The left and right springs have 

springs constants    and    respectively, have the same unstretched length   and are 

fixed to the ground separated by the same width as the body. A constant vertical force   

is applied to the body a distance    measured along the body from the left end and a 

constant torque   is applied to the body in the positive   direction (counterclockwise).  

The problem setup is shown in Figure 4.4a. The 2D rigid body test problem has 3 

degrees of freedom. The coordinates of the left end of the body (     ) and the angle   

measured from the positive   direction to the body were chosen as the independent 

displacements. The coordinate system and degrees of freedom are shown in Figure 

4.4b. 

 

(a) (b) 
Figure 4.4 (a) Rigid body test setup; (b) Deformed shape and coordinate system 
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The analytical solution was found by setting the gradients of the potential energy of the 

system to zero and solving for the independent displacements. The total potential 

energy of the system is 

 
  

 

 
  (   )

  
 

 
  (   )

         (4.3) 

  

    √  
    

    

    √(          )  (        )    

              

 

 

The analytical equations to be solved for are: 

      ⁄    

     ⁄    

    ⁄    

(4.4) 

 

The analytical equations were solved using the fsolve function in Matlab. The problem 

was set up with the following properties:         ⁄ ,        ⁄ ,      , 

     ,       ,        and        . The errors were calculated as the 

difference between the coordinates of the left spring’s node attached to the body, the 

body’s rotation and the independent displacements from the analytical solution. 

The initial displacements for the minimization solution were defined by making the 

body initially horizontal at a height L. The minimized solution gives the results: 

           ,           ,            , and total potential energy             . 

If the initial guess of the displacements for the analytical solution were the same as for 

the minimization solution (      ,       ,     ), the analytical solution gives the 

results:           ,           ,             ,              .  This analytical 

solution along with the minimized solution is shown in Figure 4.5. 
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The stability of an equilibrium solution can be related to the eigenvalues of the Hessian 

of the unconstrained potential energy function. The Hessian,  , is a matrix of the second 

partial derivatives of the potential energy function  : 

 

      [

         ⁄          ⁄         ⁄

         ⁄          ⁄         ⁄

        ⁄         ⁄        ⁄

] (4.5) 

 

The Eigen values of the Hessian evaluated at this analytical solution include an Eigen 

value near zero and is considered a marginally stable equilibrium:         , 

        ,              . 

The results are different because of how the analytical and minimization methods find 

equilibrium. The analytical solution finds equilibrium near the initial guess while the 

minimization solution finds a stable equilibrium by minimizing the potential energy. 

 

Figure 4.5 Stable numerical and unstable analytical solutions of rigid body test 
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Given an initial guess closer to the minimized solution,       ,       ,       , the 

analytical solution gives the same stable equilibrium as the minimized solution. The 

errors of these results are listed in Table 4.2 and are on the order of magnitude of     , 

the same order of magnitude as the tolerances specified for the Matlab solver fmincon. 

The Eigen values of the Hessian evaluated at these results,                      

     , show a more stable equilibrium than the analytical solution given the previous 

initial guess. The stable equilibrium of the system is shown in Figure 4.6. 

Table 4.2 Rigid body rotation errors 

   ( )    ( )   (   ) 

                                 

 

 

Figure 4.6 Undeformed and stable equilibrium positions of rigid body test 
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4.3 Slack and Ground Constraints 

To observe that the slack and ground constraints can be satisfied a test problem was 

setup consisting of two elastic lines and an applied force. The lines are fixed to each 

other at one end and the other ends are fixed to the ground at separate points. A 

vertical force   is applied at the end of the lines where they are connected. The 

unstretched length of the left line is long enough such that when the force is applied the 

left line must become slack with part of it laying on the ground and the rest hanging 

vertically below the applied force. The right line must stretch and is under tension from 

the applied force. The right line was defined to have a stiffness of          ⁄  and 

unstretched length       , and         ⁄  and          for the left line. Both 

lines have a linear density of           ⁄ . A force of        was applied to the 

system. Drag and buoyancy were not modeled in the test. The lines were separated by a 

distance of     on the ground. See Figure 4.7 for the setup. 

 

Figure 4.7 Slack test setup 

The initial positions of the elastic lines were defined as straight lines from their ground 

attachment point to the coordinates (             ), where the force is applied, such 

that the left line is initially stretched. The problem was solved with one solution using 
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20 line segments for each mooring line. The solution is plotted in Figure 4.8. The top 

view shows how the left line became slack and 11 of its segments scattered flat on the 

ground. One of segments has one end on the ground and the other end suspended 

vertically below the applied force with the rest of its segments, as seen in the front view. 

Table 4.3 lists the tension forces in each line segment, numbered with the first segment 

at the applied force toward the last segment attached to the ground. Segment numbers 

9 through 20 of the left line are the segments that touch the ground have a tension force 

near zero indicating they are slack with a length near its unstretched length. Segment 

numbers 1 through 8 of the left line are suspended below the applied force and linearly 

increase in tension from the lowest to highest segment as the line supports its own 

weight. The right line is taut from the applied force, also linearly increasing in tension 

from its lowest to highest segment due to its own weight. 

Systems with slack or grounded lines may be difficult to solve because the solver 

fmincon can take many iterations to adjust the system before it converges to a 

minimum. In some tests the solver may not converge to minimum, as discussed in 

section 5.2. It may be necessary to increase the number of iterations or function 

evaluations allowed by the solver in order for it to converge. 
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(a) Top view, showing slack line segments scattered on ground 

 
(b) Front view, showing line segments suspended vertically below applied force 

Figure 4.8 Plots of the elastic lines of the slack test solution 
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Table 4.3 Line segment tensions (N) from slack test solution 

Segment 

No. 

Left Line 

(Slack Line) 

Right Line 

(Taut Line) 

1        8.934 

2        8.886 

3        8.834 

4        8.784 

5        8.736 

6        8.689 

7        8.638 

8        8.590 

9            8.542 

10            8.490 

11            8.441 

12            8.388 

13            8.343 

14            8.296 

15            8.242 

16            8.197 

17            8.149 

18            8.097 

19            8.050 

20            7.999 
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5 Test Problems 

5.1 Iterative Solutions and Drag Forces 

A test problem consisting of a body and four mooring lines representing a basic 

underwater turbine system was run to observe the equilibrium solutions using iterative 

solutions of the same problem. Iterative solutions are necessary when drag forces are 

involved because of how the drag forces are calculated and change between each 

solution if the equilibrium solutions are different. Drag forces are calculated for each 

solution process according to the initial position of the body and mooring line 

segments. The drag forces are used with a constant magnitude and direction for the 

solution process. As the equilibrium position of the body and line segments differ from 

their initial positions their drag forces no longer correspond with their current position 

and can differ greatly in direction and magnitude. The drag forces are recalculated 

using the previous solution’s equilibrium position to more accurately represent the 

next solutions actual drag forces. The problem is solved again using the recalculated 

drag forces and previous solution as the new initial position. The iterative process can 

be repeated until there is a desired small enough change between solutions. 

The setup used for these test problems consists of a symmetric mooring system 

centered at the inertial frame origin (Figure 5.1a). A constant fluid velocity of 

magnitude | ̅ |     ⁄  acts on the system in the positive   direction (    in Figure 

5.1a). The fluid velocity is constant with depth (  direction), although actual stream or 

current profiles may vary with depth and decrease to zero near the seabed. A constant 

velocity profile may be a harder problem to solve because it causes greater drag forces 

near the seabed and was used for test purposes. 

The attachment points of the mooring lines to the body are symmetric with respect to 

the body-fixed frame and are level with the body’s COM (Figure 5.1b). 



 
36 

 

 
 

 

 

(a) Inertial frame and system setup, top view, 
showing mooring line ground attachment points 

and fluid velocity 

(b) Body-fixed frame and 
mooring line attachment points 

Figure 5.1 Test system mooring line and fluid velocity setup 
 

The following tables list the property values used in these test problems. The values in 

Table 5.2 and Table 5.3 are generally guesses and do not represent an actual system. 

There are, however, some relationships between values and physical properties that 

can be used to estimate some values. The volume of the body was chosen such that its 

buoyant force is greater than the weight of the body and mooring lines combined. The 

body’s dimensions are modeled as a rectangular box with a width of     , depth of    , 

and a height of      . Because an actual turbine is not a solid rectangular shape the 

effective surface areas of the body are only a small percentage of the rectangular area. 

For areas of the turbine in which the water is designed to flow through (the    and    

directions) the effective areas are about 10% of the rectangular area and larger for 

other areas (50% for the    direction). The body’s initial COM coordinates must be 

chosen such that all the mooring lines are slightly stretched to avoid invalid initial 

conditions of compressed mooring lines (discussed in Appendix 1). 
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Table 5.1 System constant properties 

Property Value 

Gravity         ⁄  
 

Fluid density            ⁄  

Fluid speed | ̅ |     ⁄  

 

Table 5.2 Body properties 

Property Value 

Mass            

Volume             

Center of Buoyancy  ̅   [           ]
  [   ]  ( ) 

Coefficients of Drag   ̅  [              ]
 

 [         ]  

Effective Surface Areas  ̅   [                 ]
 

 [      ]  (  ) 

Applied Forces  ̅     [                    ]
 

 [   ]  ( ) 

Applied Torques  ̅     [                    ]
 

 [   ]  (  ) 

Initial COM coordinates   ̅  [   ]  [    ]  (m) 

Initial Euler angles [      ]
  [   ]  (radians) 

 

The tangential and normal coefficients of drag for the mooring lines are approximated 

by the coefficients for a cylinder. The actual diameter of the mooring lines should be 

used because this value is used to calculate the surface areas and volume of the mooring 

lines. With a diameter of     , the elastic stiffness of the mooring lines is based on an 

elastic modulus of 10 Gpa. 
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Table 5.3 Mooring Line properties 
(The same values were used for all mooring lines) 

Property Value 

Tangential Coefficient of Drag    ̂      

Normal Coefficient of Drag    ̂    

Linear Density         ⁄  

Undeformed Length         

Diameter           

Stiffness             ⁄  

 

Table 5.4 Mooring Line attachment points 

Line # 

Ground Attachment (m) 

 ̅    [                    ]
 

 

Body Attachment (m) 

 ̅     [                       ]
 

 

1 [      ]  [    ]  

2 [     ]  [   ]  

3 [      ]  [    ]  

4 [       ]  [     ]  

 

The test problem was solved with four iterative solutions. The first two solutions used 

10 segments per mooring line. The segment centers of the second solution were used to 

define new segment nodes to double the number of line segments. 20 segments were 

then used for the third and fourth solutions. Figure 5.2 through Figure 5.5 show a top 

view of each equilibrium solution with the tangential and normal drag forces on each 

mooring line segment. 

The segment drag forces are the most inaccurate after the first solution. The initial 

position used for the first solution centers the body’s COM above the center of the 

seabed attachment points and draws a straight line from the seabed attachment point 

to the body attachment point to define the line nodes. As the body is pushed back from 

the drag force the mooring lines downstream of the flow become curved from the 

seabed to the body. Figure 5.2 shows how the initial drag forces on the downstream line 

segments do not nearly match the solutions current normal and tangential directions. 
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The second solution shows a much closer alignment of the initial drag forces to the 

segments solution orientations (Figure 5.3) because the system is displaced less 

between the initial and final positions. The third and fourth iterations show 

increasingly more accurate alignments of drag forces between the initial and final 

positions (Figure 5.4 and Figure 5.5). 
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Figure 5.2 First solution and segment drag forces 

 

Figure 5.3 Second solution and segment drag forces 
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Figure 5.4 Third solution and segment drag forces 

 

Figure 5.5 Fourth solution and segment drag forces 
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Figure 5.6 through Figure 5.9 show a side view of each iterative solution. Table 5.5 lists 

the body’s COM position and Euler angles for each iterative solution.  

Table 5.5 Body’s COM position and Euler angles, | ̅ |     ⁄       

Solution   ( )   ( )   ( )   (   )   (   )   (   ) 

1      4.552 10.67 0.2732           

2      2.915 14.98 0.3482           

3      2.410 16.02 0.3747           

4      2.263 16.30 0.3809           

 

 

Figure 5.6 First solution 

 

Figure 5.7 Second solution 
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Figure 5.8 Third solution 

 

Figure 5.9 Fourth solution 

Figure 5.10 shows a 3D view of the fourth iterative solution. 

These test solutions show the body is rotated significantly toward the oncoming stream 

flow. This rotation can be important to the power performance of a hydrokinetic 

turbine if the turbine is orientated in line with the body and, therefore, off-axis to the 

incoming flow, or if part of turbine’s support structure now blocks part of the fluid flow 

over the turbine. The rotation is caused by torques applied to the body from the tension 

forces in the mooring lines. 

Considering a 2D model of the body and tensions forces from the mooring lines (Figure 

5.11), a rotation will occur if one tension force is larger than the other and/or at 
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different angles relative to the body. In this test the mooring lines upstream are 

stretched more and have a greater tension force ( ̅ ) than the mooring lines 

downstream ( ̅ ).  

 

Figure 5.10 Perspective of fourth solution 

 

 

Figure 5.11 2D model of tension forces on the body 
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Table 5.6 lists the components and magnitudes of the tension forces in the mooring line 

segments attached to the body from the fourth iterative solution. 

Table 5.6 Mooring line segment tensions at body (N) 

Line # 1 2 3 4 

   55,225 6,091.5 -6,080.9 -55,226 

   -53,783 12,603 12,581 -53,784 

   -32,305 -5,705.8 -5,696.0 -32,305 

Magnitude 83,582 15,116 15,090 83,584 

 

For the 2D model of the line tensions on the body (Figure 5.11), only forces in the     

plane are considered because the solution is nearly symmetric about the   axis. The 

average tension in the upstream mooring lines (lines # 1 and 4) were taken to model 

the  ̅  tension force and the average tension in the downstream mooring lines (lines # 

2 and 3) to model the  ̅  tension. Table 5.7 lists the components of the  ̅  and  ̅  forces. 

Table 5.7 Tension forces on body for 2D model (N) 

Force  ̅   ̅  

Y-component -53,784 12,592 

Z-component -32,305 -5,700.9 

 

Taking the moments about the body’s COM can show why the body will rotate towards 

the oncoming stream flow if  ̅  is greater than  ̅ . The weight, buoyancy and drag force 

on the body act at the body’s COM in this test and do not cause a torque on the body. 

Because the attachment points of the mooring lines are symmetric in the body-fixed 

frame, the two tension forces have the same length of moment arm   (for this test 

     ). When the body is rotated to equilibrium, the          and     components of 

force create clockwise torques that balance out the large counterclockwise torque of the 

    force. For the 2D model only the   rotation is considered to model the rotation of 

the body, with              from the fourth iterative solution, measured positive 
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counterclockwise from the   axis. The sum of moments about the body’s center of mass 

for the 2D model is 

  ∑   |   |      |   |      |   |      |   |     

           

(5.1) 

 

The net torque on the body from Equation 5.1 is not zero but is several orders of 

magnitude smaller than the tension forces on the body. The difference of the net torque 

from zero is due to the approximations made for the 2D model and that the solution has 

a small rotation of the body about the   axis and is not perfectly symmetric about the   

axis. 

5.2 Varying Fluid Velocity Angle 

A series of test problems were run with the same set up as the previous section but 

varying the angle the fluid velocity makes with the   axis (Figure 5.1). The angle   was 

varied from    to     in increments of     with a constant speed of | ̅ |     ⁄ . These 

correspond to cases for off-axis flow such as might occur in an elliptical tidal current. 

Three iterative solutions were used to solve the problem, using 10 segments per 

mooring line for the first two solutions and 20 segments for the third. Three iterative 

solutions were run instead of four as with the previous test only for convenience to take 

less time to run the tests. For comparison the system was solved with zero fluid velocity 

and three iterative solutions. The COM displacement is calculated as the magnitude of 

displacement of the body’s center of mass with fluid velocity compared to the solution 

with zero fluid velocity. Figures Figure 5.12 and Figure 5.13 plot the body’s position and 

Euler angles versus the fluid velocity angle respectively. 
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Figure 5.12 Body’s position and displacement versus velocity angle 

 

 

Figure 5.13 Body’s Euler angles versus velocity angle 
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These solutions show the body consistently rotates toward the oncoming fluid flow as 

the fluid velocity angle changes. The body’s COM displacement and depth stay fairly 

constant, with their difference between tests within one meter. Table 5.8 lists the 

body’s COM position and Euler angles for zero fluid velocity and for each angle with 

fluid velocity. Figure 5.14 shows a front view of the third iterative solution when 

     . 

Table 5.8 Body’s COM position and Euler angles for varying fluid velocity angles 

  

(   ) 
  ( )   ( )   ( )   (   )   (   )   (   ) 

    

        

( ) 

0 

Vel. 
          19.25                --- 

0      2.410 16.02 0.3747           4.032 

10 0.1607 2.360 16.08 0.3722 -0.00499 0.01849 3.951 

20* 0.4434 2.223 16.23 0.3604 -0.01699 0.05161 3.776 

30* 0.7982 2.073 16.36 0.2864 -0.05405 0.1099 3.645 

40* 1.566 1.886 15.84 0.2432 -0.09602 0.1598 4.197 

50* 2.041 1.162 16.34 0.1675 -0.1912 0.1421 3.741 

60* 2.276 0.6803 16.56 0.1046 -0.2491 0.09694 3.584 

70* 2.371 0.3224 16.78 0.04188 -0.2882 0.04369 3.440 

80 2.408 0.09787 16.83 0.02296 -0.3057 0.01371 3.413 

90* 2.430 -0.01124 16.82 -0.00494 -0.3097 -0.00371 3.432 

* Some or all iteration solutions did not converge 
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Figure 5.14 Front view of equilibrium solution, | ̅ |     ⁄        

 

For many of these tests the Matlab minimization solver fmincon did not converge to a 

minimum. The solver will stop prematurely if it reaches a limit on the number of 

iterations or function evaluations before minimizing the objective function within a 

specified tolerance. For iterations that do not converge the solver displayed a maximum 

constraint value that can vary by several orders of magnitude, sometimes increasing to 

the order of 100, indicating that not all the constraints are satisfied at that solver 

iteration. Some of the constraints may need to be relaxed in such cases to converge to a 

minimum. 

It should be noted that the tolerances specified for the fmincon solver of      (default 

values) is very tight for a problem of this scale with displacements measured in meters. 

Some constraints such as the ground constraint may realistically allow softer 

constraints than others because the moorings lines and body may sink into the ground, 

but the solver only allows the same tolerance to be applied to all constraints. 

A possible cause for the solver not converging or constraints being satisfied may be the 

mooring lines being unable to take the shape needed to minimize the potential energy. 

The shape of the mooring lines is dependent on its number and size of line segments. 

Bends in the mooring line are only approximated as straight lines by the line segments. 
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A minimum potential energy may require the line segments or nodes to be in a position 

they cannot be because of constraints such as the slackness or ground constraints. 

Figure 5.15 shows how the shape of the mooring line furthest downstream (line #2) 

changes between each solution iteration for the test where | ̅ |     ⁄       . For 

this test the solver did not converge for each iterative solution. 

Smaller line segments may be required to accurately describe the bend of the mooring 

line near the ground attachment point to find a minimum in the potential energy. 

Another condition that could require smaller line segments includes a case where some 

of the mooring line segments touch the ground. A minimum in the potential energy may 

require only a fraction of a segment to touch ground, but the solver cannot reach this 

minimum because either all or none of the line segment will touch the ground. A 

possible fix to these problems is to use mesh refinement and increase the number of 

line segments near the ground or bends and is to be considered in the future work of 

this research. 
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(a) First solution (b) Second solution 

 

(c) Third solution 

Figure 5.15 Top view of mooring line #2 near its ground attachment point 
 | ̅ |     ⁄        

 

5.3 Sensitivity to Variation in the Location of the COM and COB 

The location of the body’s center of mass (COM) or center of buoyancy (COB) relative to 

the body-fixed frame may not be known exactly or can only be estimated with a low 

tolerance. The system may not behave as expected if the COM or COB is not located 

where they were expected to be, or the system may behave more desirably if the COM 

or COB are moved to different locations. To observe the system’s sensitivity to these 

variations multiple solutions were compared varying the locations of the COM and COB. 
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The models used in these test problems assume the body’s COM is located at its 

geometric center and the body mooring line attachment points are symmetric about the 

body-fixed frame’s origin. A variation in the body’s COM results in the attachment 

points locations to vary in the body-fixed frame relative to the actual COM. The 

difference of the body’s actual COM compared to the expected COM in the body-fixed 

frame is represented as         , in the body-fixed          directions respectively. 

The body mooring line attachment points relative to the actual COM in the body-fixed 

frame become 

  ̅     [                                ]
 

 (5.2) 

 

where        , etc. are the components of the attachment points relative to the body’s 

expected COM or geometric center. 

Variations on the COM and COB were chosen to be 10% of the body’s dimensions. The 

body dimension used were a width of      (   direction), depth of     (   direction) 

and height of       (   direction), giving the variation magnitudes of         , 

         and          .  

The test problems have the same setup as section 5.1 but with zero fluid velocity. Three 

iterative solutions were run, using 10 segments per mooring line for the first two 

solutions and 20 segments for the third. 

The COM and COB locations were varied in the positive and negative directions along 

one axis at a time keeping all other variations set to zero.  When the COM was varied the 

COB remained fixed to the COM ( ̅   [   ] ). When the COB was varied the COM 

remained at the body’s geometric center (the mooring line body attachment points did 

not change) and the COB location in the body-fixed frame changed according to  

  ̅   [      ]  (5.3) 
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Figures Figure 5.16 and Figure 5.17 plot the change in the body’s position and change in 

Euler angles dues to variations in the body’s COM and COB respectively compared to 

the solution with no variations. 

The body’s COM position moves in the same direction as its variation. The body rotates 

when there is a COM    and    variance, with the side the COM is moved toward rising 

higher than the opposite end. Figure 5.18 plots the equilibrium solution for a variation 

of the COM in the positive    direction. The body’s COM equilibrium moved about     in 

the positive   direction and rotated about           in the   direction. 

A variation in the COB causes a smaller change in the body’s translational position but a 

larger change in the body’s rotation compared to a variation in the COM. Figure 5.19 

plots the equilibrium solution for a variation of the COB in the positive    direction. The 

body’s COM equilibrium moved about       in the positive   direction and rotated 

about          in the   direction. The body’s   and   rotations are almost doubled 

compared to the rotations from the variance in the COM. The larger rotations are 

caused by the additional torque on the body when the COB is offset laterally from the 

COM. 

Because of the symmetry of the system the results are symmetric for variances in the 

positive and negative    and    directions, though the results are not exactly symmetric 

because of small numerical differences in the solutions. Variances in the    direction do 

not cause rotations as expected and did not change the results of the overall system.  

It should be noted that a location of a submerged body’s COB below the COM is not a 

stable equilibrium position for a body by itself. The COB would be located above the 

COM in stable equilibrium positions as any lateral offset between the COM and COB 

would cause a torque on the body in a direction to orient itself in the stable position. 

For this test, the solution did converge to equilibrium when the COB was located below 

the COM. The existence of the mooring lines would physically prevent the body from 

rotating upside down and could also prevent the solver from finding a minimum in the 
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potential energy such that the body had rotated upside down because a local minimum 

could be found leaving the COB below the COM. 

 

 

 

 

 

 

 

 

 

 

 

 



 
55 

 

 
 

  

  

  
Figure 5.16 Change in body’s position and Euler angles due to variation of body’s COM 
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Figure 5.17 Change in body’s position and Euler angles due to variation of body’s COB 
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Figure 5.18 Equilibrium position due to    variation in body’s COM 

 

 

Figure 5.19 Equilibrium position due to    variation in body’s COB 
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6 Matlab Implementation and Solver 

All the code necessary to model and solve these problems was written in Matlab with 

the intent that a user can easily modify the code to model and solve their problem. All 

the Matlab script files and functions written fall under the following categories: 

 Script files to define the properties and set up everything necessary to solve a 

problem 

 Functions to calculate the potential energies in the system 

 Function to set up the constraints and options for the built-in Matlab function 

fmincon to minimize the potential energy to solve for equilibrium 

 Functions to plot the solutions 

 Various functions for calculations such as defining the fluid velocity profile and 

calculating the Euler angle rotation transformation matrix 

The Matlab function fmincon, which is part of the Matlab Optimization Toolbox, is used 

to minimize the potential energy. Fmincon finds the minimum of a constrained 

nonlinear multivariable function, also known as nonlinear programming. The current 

version of code for this research uses fmincon’s active-set algorithm that uses a 

sequential quadratic programming method and computes the Hessian using finite 

differences. 

The fmincon function allows various types of constraints on the variables to be defined. 

For the type of systems considered in these problems the following constraints were 

defined: 

 Lower Bound Constraints: To model the ground constraint, the lower bound of 

the   coordinate of every line node and the body is set to zero, so that    . The 

lower bound for every other variable is set to    so that it is not constrained. To 

model other seabed topographies, the elevation of the seabed can be defined as a 

function of   and  . 



 
59 

 

 
 

 Linear Equality Constraints: To model the ground attachment point or anchor 

of the mooring line, the last node of the mooring line ( ̅   ) is set to be equal to 

its ground attachment point ( ̅   ). 

 Non-linear Inequality Constraints: The slack constraint for the mooring lines 

such that they can only stretch and not compress requires that a line segment’s 

instantaneous length (| ̅       ̅   |) is greater than or equal to its unstretched 

length (    ). For the solver this must written in the form 

  | ̅       ̅   |        . 

 Non-linear Equality Constrains: The coordinates of the first node of a mooring 

line ( ̅   ) are constrained to be fixed to its body attachment point (  ̅   ). For 

the solver this written in the form  ̅     ̅     ̅     . 

For more information about fmincon, the optimization algorithms used and how to 

use Matlab’s optimization functions see Matlab’s Optimization Toolbox help 

documentation which is also available on the MathWorks website (13). 

All the Matlab script files to solve these benchmark and test problems are included 

in the Appendices. A script file that sets up the general test problem with multiple 

mooring lines is included with an explanation of how to setup the code in Appendix 

1. The setups for the Elastic Catenary and Rigid Body Rotation benchmarks are 

included in their own script files. The user can modify these setup files to define the 

system’s properties as they wish. Only the setup script files need to be run to solve 

the problem and display the results.  

Object oriented programming is used to keep track of potential energies associated 

with the body and mooring lines. This is done so the way the body and mooring 

lines are modeled can be easily modified. All of the code is commented throughout 

to describe all the variables, calculations, functions and their inputs and outputs. 
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The code was written using Matlab version R2009a. The user needs the 

Optimization Toolbox installed with Matlab in order to run the code. 
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7 Future Work 

The future work involving this research can be divided into two categories: 

improvements to the current work, and further or additional research. Improvements 

to the current work can include changes to the code and how the system is modeled. 

Some improvements include: 

 Mesh refinement – The number of line segments in the mooring lines is locally 

increased in problems areas such where the mooring line touches the ground or 

around kinks so the solver may converge or provide a more accurate solution. 

 Split mooring lines and multiple bodies – The mooring lines can be attached to 

other mooring lines or a different body instead of having one end attached to the 

ground and the other end attached to the body for each mooring line. 

Additional forces or the way they are modeled can be added to the current code by 

adding the appropriate properties and potential energy calculation functions to the 

body and mooring line classes. 

Further research includes work that can use the equilibrium solutions as a basis or 

work to analyze different properties of the system. Some of the further research areas 

include: 

 Dynamic analysis – Behavior of the system over time and can include time-

varying forces such as the effect of waves or currents. 

 Vibration analysis – Vibration of the body and mooring lines from fluid or 

turbine forces (e.g., vortex induced vibration). 

 Control issues – Possible methods to control the body’s position and orientation, 

and optimal mooring configurations that allow better control of the body. 
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Appendix 1 – Example of a Body and Multiple Mooring Line System 

Setup Script 

This example explains how to setup a Matlab script file to model a general body and 

multiple mooring line system to solve for equilibrium. The complete script file 

referenced in this example (Sys_test.m) is included in Appendix 2, which the user can 

modify to model their specific system. 

Lines 9 through 30 in the script file define the properties necessary to create a body 

object. Each property of the body is assigned a variable. Above each variable is a 

comment describing what the variable represents, units of the variable if applicable in 

parenthesis and the format of the variable, for example: the variable must be a column 

vector of the form [CDx’; CDy’; CDz’]. 

This version of code requires all of these properties to be defined before creating a body 

object. The user can use a different system of units but they must make sure all the 

other properties and all calculations using these properties use a consistent set of units. 

For this example the user only needs to define a value for each variable. 

The body’s COM initial position is defined on line 28. Note that not any initial position 

can be chosen because the solver may not start if inappropriate initial positions are 

chosen. As stated in the comments above line 28 the initial length of the mooring lines 

must be greater than or equal to its unstretched length. The user should choose an 

initial body position that slightly stretches each mooring line. 

All the body property variables are passed to the newBody function in line 33 to create 

a new body object labeled Body in this example. This variable Body is what is passed to 

other functions to perform calculations that require the body’s properties. 

Lines 37 through 71 define the properties necessary to create a line object for each 

mooring line in the system. Above each variable is a comment describing what the 

variable represents in the same manner as the body properties. 
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Because this example uses the same property values for all mooring lines only one 

value was assigned for the linear density (line 41), unstretched length (line 44) and 

diameter (line 51) variables and were not defined as arrays. 

To assign different values of the same property to each mooring line the property is 

defined as an array (column or row vector) with each element containing the value for a 

single mooring line. For example, the stiffness of the mooring lines is defined as a row 

vector (line 53) with four numbers representing the stiffness value for each of the four 

mooring lines. This example used the same value for all mooring lines but the user can 

specify different values for each mooring line. The length of the arrays must be the same 

as the number of mooring lines in the system (in this example the length is 4). 

Lines 56 through 59 define the coordinates of the mooring lines’ body attachment 

points as column vectors. A separate variable must be defined for each mooring line. 

Line 62 places all the body attachment point column vectors into a matrix to be used 

later in a for loop to create a line object for each mooring line. 

Lines 65 through 68 define the coordinates of the mooring lines’ ground attachment 

points as column vectors and line 71 places all the ground attachment point column 

vectors into a matrix. 

Line 71 is the last line the in this example code that the user needs to modify in order to 

set up a problem just to solve for equilibrium of the system. Constants such as gravity, 

fluid density and the mooring line coefficients of drag are defined in the newBody.m 

and newLine.m class files and need to be changed by the user as necessary. The fluid 

velocity profile needs to be defined by the user by modifying the FluidVelocity.m file. 

If the user wants to plot the drag forces on the system they can uncomment the lines 

that begin with the PlotDrag3D functions (Ex. Uncomment line 115 to plot the drag 

forces from the first solution). 
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Line 74 sets up the initial displacement column vector by placing the body’s initial COM 

coordinates in rows 1 through 3 and the initial Euler angles in rows 4 through 6. 

Lines 76 through 107 define straight lines for each mooring line from its body 

attachment point to its ground attachment point. The lines are divided into equal length 

segments and the coordinates of each node are successively added to the initial 

displacement vector. 

Line 103 creates a new line object and adds them to a line object array called Lines 

within a for loop that uses the variable i that goes from one to the number of mooring 

lines in the system. The variable i is used as an index to keep track of the variables 

associated for each mooring line. For example, an array was created for the stiffness 

values (line 53) labeled K. When each line object is created the ith element of the K array 

is passed to the newLine function with the syntax K(i). 

The index of the mooring line properties must be kept consistent between properties. 

For example, the first mooring line has its body attachment point as the first column in 

the body attachment point matrix and its stiffness value as the first element in the K 

array. The second mooring line has its body attachment point as the second column in 

the body attachment point matrix and its stiffness value as the second element in the K 

array, and so on. 

Line 110 solves the system by passing the body object (Body), line object array (Lines) 

and initial displacement vector to the equilibrium solver function EquilSolver. This 

function returns the solution of displacement variables in column vector that is 

assigned to the variable qf. 

Lines 112 through 115 plot the solution. The user can uncomment line 115 to plot the 

drag forces on the system as red arrows on the plot of the solution. Lines 117 through 

123 solves and plots the system a second time using the SysUpdate function (line 118) 

to update the drag forces on the system. Lines 125 through 131 solves and plots the 

system a third time and doubles the number of line segments by using the SysRefine 
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function (line 126). The user can uncomment lines 134 through 139 to update the 

system drag forces and solve and plot the solution for a fourth time. 

  



 
68 

 

 
 

Appendix 2 – Sys_test.m – Basic Body and Mooring Line Test Setup 

clear 
close all 
clc 

  
% Example test problem with multiple mooring lines 

  
% Specify Body properties 

  
% Mass of body (kg) 
M = 5000; 
% Volume of body (m^3) 
V = 10; 
% Center of buoyancy relative to center of mass in body-fixed frame (m), 
% column vector [cbx'; cby'; cbz'] 
cB = [0; 0; 0]; 
% Coefficients of Drag in the body-fixed frame [CDx'; CDy'; CDz'] 
CD = [0.5; 0.5; 0.5];       
% Effective surface areas of the Body in the body-fixed frame (m^2) 
% [Ax'; Ay'; Az'] 
AB = [16; 24; 11]; 
% Applied forces to the Body in global frame (N) [FaX; FaY; FaZ] 
Fa = [0; 0; 0]; 
% Applied torques to the Body in global frame (N*m) [TaX; TaY; TaZ] 
Ta = [0; 0; 0]; 
% Initial position of center of mass in global frame (m) c = [x; y; z] 
% Must be chosen such that the initial elongations of the mooring lines 
% are stretched and not shorter than the unstretched lengths of the lines. 
c_i = [0; 0; 20]; 
% Initial xyz Euler angles (radians) angles_i = [alpha; beta; gamma] 
angles_i = [0; 0; 0]; 

  
% Creates new Body object 
Body = newBody(M,V,cB,CD,AB,Fa,Ta,c_i,angles_i) 

  
% Specify Mooring Line properties 

  
% Number of mooring lines 
nl = 4; 
% Linear mass density of the line (kg/m) 
% The same property value is used for all mooring lines in this example 
rho_l = 10; 
% Unstretched length of the entire mooring line (m) 
% The same property value is used for all mooring lines in this example 
L = 44; 
% Number of segments per mooring line 
% This version of code only allows all mooring lines to have the same 
% number of line segments. 
N = 10; 
% Diameter of the line (m) 
% The same property value is used for all mooring lines in this example 
d = .05; 
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% Stiffness of mooring lines (N/m) K = [K1, K2, ..., Knl] 
K = [446250, 446250, 446250, 446250]; 
% Attachment point of mooring lines to body in body-fixed frame (m) 
% pBi = [pBx'; pBy'; pBz'] 
pB1 = [7; -2; 0]; 
pB2 = [7; 2; 0]; 
pB3 = [-7; 2; 0]; 
pB4 = [-7; -2; 0]; 
% Matrix of all body attachment points, each column is a lines attachment 
% point vector 
pB = [pB1, pB2, pB3, pB4]; 
% Attachment point of mooring lines to ground in global frame (m) 
% pGi = [pGX; pGY; pGZ] 
pG1 = [35; -30; 0]; 
pG2 = [35; 30; 0]; 
pG3 = [-35; 30; 0]; 
pG4 = [-35; -30; 0]; 
% Matrix of all ground attachment points, each column is a lines 

attachment 
% point vector 
pG = [pG1, pG2, pG3, pG4]; 

  
% Set up initial position vector 
q_i = [c_i;angles_i]; 

  
% Adds the coordinates of the line nodes to the initial position vector 
for i=1:nl 
    % Initial coordinates of the nodes 
    % Sets up nodes along a straight line from the Body attachment point 

to 
    % the ground attachment point 

     
    % Body node in global frame 
    p0 = c_i + Txyz(angles_i)*pB(:,i); 
    % Line vector from Body node to Ground node 
    Lvec = pG(:,i) - p0;      
    % Initialize node coords. 
    ql_i = zeros((N+1)*3,1); 
    % Body node 
    ql_i(1:3) = p0; 
    % Ground node 
    ql_i((N+1)*3 - 2:(N+1)*3) = pG(:,i);    
    % Sets up segment nodes 
    if N>1                                   
        for j=1:(N-1) 
            ql_i(1+3*j:3+3*j) = p0 + Lvec*j/N; 
        end 
    end 

  
    % Sorts the coords. of the line nodes into column vectors 
    P_i = reshape(ql_i,3,length(ql_i)/3); 

  
    % Create new line object 
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    Lines(i) = newLine(rho_l,L,N,d,K(i),pB(:,i),pG(:,i),P_i) 

  
    % Add initial node coords. to initial position vector 
    q_i = [q_i;ql_i]; 
end 

  
% Solve the system, 1st iteration 
qf = EquilSolver(Body,Lines,q_i); 

  
% Plot the Body and Mooring Lines 
PlotSolu(qf,Body,Lines) 
% Plot the drag force vectors on the Body and Mooring Lines 
%PlotDrag3D(qf,Body,Lines) 

  
% 2nd iteration, updates system drag forces 
[Body2, Lines2] = SysUpdate(Body,Lines,qf); 
qf2 = EquilSolver(Body2,Lines2,qf); 

  
figure 
PlotSolu(qf2,Body2,Lines2) 
%PlotDrag3D(qf2,Body2,Lines2) 

  
% 3rd iteration, doubles number of line segments 
[Body3, Lines3, q3] = SysRefine(Body2,Lines2,qf2); 
qf3 = EquilSolver(Body3,Lines3,q3); 

  
figure 
PlotSolu(qf3,Body3,Lines3) 
%PlotDrag3D(qf3,Body3,Lines3) 

  
%% 4th iteration, updates system 
% [Body4, Lines4] = SysUpdate(Body3,Lines3,qf3); 
% qf4 = EquilSolver(Body4,Lines4,qf3); 
%  
% figure 
% PlotSolu(qf4,Body4,Lines4) 
% PlotDrag3D(qf4,Body4,Lines4) 
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Appendix 3 – Catenary_test.m – Elastic Catenary Test Setup 

clear 
close all 
clc 

  
% Elastic Catenary test problem, compares the numerical solution to an 
% analytical solution. 
% The fluid velocity function must return zero fluid velocity, and the 
% fluid density in the newLine class must be set to zero. 

  
% Specify Body properties, only used to specify the horizontal and 

vertical 
% applied force, and the initial position of the free end, all other 
% properties must be set to zero.  

  
% Mass of body (kg) 
M = 0; 
% Volume of body (m^3) 
V = 0; 
% Center of buoyancy relative to center of mass in body-fixed frame (m), 
% column vector [cbx'; cby'; cbz'] 
cB = [0; 0; 0]; 
% Coefficients of Drag in the body-fixed frame [CDx'; CDy'; CDz'] 
CD = [0; 0; 0];       
% Effective surface areas of the Body in the body-fixed frame (m^2) 
% [Ax'; Ay'; Az'] 
AB = [0; 0; 0]; 
% Applied forces to the Body in global frame (N) [FaX; FaY; FaZ] 
Fa = [50; 0; 75]; 
% Applied torques to the Body in global frame (N*m) [TaX; TaY; TaZ] 
Ta = [0; 0; 0]; 
% Initial position of center of mass in global frame (m) c = [x; y; z] 
c_i = [8; 0; 6]; 
% Initial xyz Euler angles (radians) angles_i = [alpha; beta; gamma] 
angles_i = [0; 0; 0]; 

  
% Creates new Body object 
Body = newBody(M,V,cB,CD,AB,Fa,Ta,c_i,angles_i) 

  
% Specify Line properties 

  
% Linear mass density of the line (kg/m) 
rho_l = 0.7; 
% Unstretched length of the entire mooring line (m) 
L = 10; 
% Number of segments per mooring line 
N = 5; 
% Diameter of the line (m) 
d = .01; 
% Elastic Modulus of the line (Pa, N/m^2) 
E = 1e8; 
% Stiffness of mooring line (N/m) 
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K = E*pi*(d/2)^2/L; 
% Attachment point of mooring line to body in body-fixed frame (m)  
% [pBx';pBy';pBz'], must be set to zero for this test 
pB = [0;0;0]; 
% Attachment point of mooring line to ground in global frame (m)  
% [pGX; pGY; pGZ] 
pG = [0;0;0]; 

  
% Initial coordinates of the nodes 
% Sets up nodes along a straight line from the Body node to the Ground 

node 
p0 = c_i + Txyz(angles_i)*pB;   % Body node in global frame 
Lvec = pG - p0;                 % Line vector from Body node to Ground 

node 
ql_i = zeros((N+1)*3,1);        % Initialize node coords. 
ql_i(1:3) = p0;                 % Body node 
ql_i((N+1)*3 - 2:(N+1)*3) = pG; % Ground node 
if N>1                          % Sets up segment nodes 
    for j=1:(N-1) 
        ql_i(1+3*j:3+3*j) = p0 + Lvec*j/N; 
    end 
end 

  
% Sorts the coords. of the line nodes into column vectors 
P_i = reshape(ql_i,3,length(ql_i)/3); 

  
% Create new line object 
Lines(1) = newLine(rho_l,L,N,d,K,pB,pG,P_i) 

  
% Set up initial displacements 
q_i = [c_i;angles_i;ql_i]; 

  
% Plot analytical solution 
A = pi*(d/2)^2; % Cross-sectional area 
H = Fa(1);      % X-component of force 
V = Fa(3);      % Z-component of force 
s = 0:L/1000:L; % Unstretched arclength 
% Analytical X and Z solutions 
[Xa,Za] = Catenary_Solu(E,A,L,rho_l,H,V,s); 
Ya = zeros(size(Xa)); 
axis equal 
plot3(Xa,Ya,Za,'r','LineWidth',2) 

  
% Solve the system 
qf = EquilSolver(Body,Lines,q_i); 

  
% Plot the solution 
PlotSolu(qf,Body,Lines) 
view(0,0) 
xlim([0 8]); xlabel('X (m)') 
zlim([0 6]); zlabel('Z (m)') 
legend('Analytical','Numerical','Location','NorthWest') 
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% Calc. Errors 
s = 0:L/N:L;    % Arc length at nodes 
Zerror1 = zeros(1,N+1);  % Z error at nodes 
Xerror1 = zeros(1,N+1);  % X error at nodes 
% Analytical solution at nodes 
[Xa1,Za1] = Catenary_Solu(E,A,L,rho_l,H,V,s);  
for i=0:N 
    Xerror1(length(Xerror1)-i) = qf(7+3*i)-Xa1(length(Xa1)-i); 
    Zerror1(length(Zerror1)-i) = qf(9+3*i)-Za1(length(Za1)-i); 
end 
Xerror1 
Zerror1 
Xe1 = norm(Xerror1)          % 2 norm of Xerror 
Ze1 = norm(Zerror1)          % 2 norm of Zerror 
Xe1inf = norm(Xerror1,inf)    % Inf. norm of Xerror 
Ze1inf = norm(Zerror1,inf)    % Inf. nrom of Zerror 

  
%% 2nd iteration, doubles number of nodes 
[Body2, Lines2, q2] = SysRefine(Body,Lines,qf); 
qf2 = EquilSolver(Body2,Lines2,q2); 

  
figure 
plot3(Xa,Ya,Za,'r','LineWidth',2) 
PlotSolu(qf2,Body2,Lines2) 
view(0,0) 
xlim([0 8]); xlabel('X (m)') 
zlim([0 6]); zlabel('Z (m)') 
legend('Analytical','Numerical','Location','NorthWest') 

  
% Calc. Errors 
N2 = Lines2(1).N; 
s = 0:L/N2:L;    % Arc length at nodes 
Zerror2 = zeros(1,N2+1);  % Z error at nodes 
Xerror2 = zeros(1,N2+1);  % X error at nodes 
% Analytical solution at nodes 
[Xa2,Za2] = Catenary_Solu(E,A,L,rho_l,H,V,s);  
for i=0:N2 
    Xerror2(length(Xerror2)-i) = qf2(7+3*i)-Xa2(length(Xa2)-i); 
    Zerror2(length(Zerror2)-i) = qf2(9+3*i)-Za2(length(Za2)-i); 
end 
Xe2 = norm(Xerror2)          % 2 norm of Xerror 
Ze2 = norm(Zerror2)          % 2 norm of Zerror 
Xe2inf = norm(Xerror2,inf)    % Inf. norm of Xerror 
Ze2inf = norm(Zerror2,inf)    % Inf. nrom of Zerror 

  
% 3rd iteration, doubles number of nodes 
[Body3, Lines3, q3] = SysRefine(Body2,Lines2,qf2); 
qf3 = EquilSolver(Body3,Lines3,q3); 

  
figure 
plot3(Xa,Ya,Za,'r','LineWidth',2) 
PlotSolu(qf3,Body3,Lines3) 
view(0,0) 
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xlim([0 8]); xlabel('X (m)') 
zlim([0 6]); zlabel('Z (m)') 
legend('Analytical','Numerical','Location','NorthWest') 

  
% Calc. Errors 
N3 = Lines3(1).N; 
s = 0:L/N3:L;    % Arc length at nodes 
Zerror3 = zeros(1,N3+1);  % Z error at nodes 
Xerror3 = zeros(1,N3+1);  % X error at nodes 
% Analytical solution at nodes 
[Xa3,Za3] = Catenary_Solu(E,A,L,rho_l,H,V,s); 
for i=0:N3 
    Xerror3(length(Xerror3)-i) = qf3(7+3*i)-Xa3(length(Xa3)-i); 
    Zerror3(length(Zerror3)-i) = qf3(9+3*i)-Za3(length(Za3)-i); 
end 
Xe3 = norm(Xerror3)          % 2 norm of Xerror 
Ze3 = norm(Zerror3)          % 2 norm of Zerror 
Xe3inf = norm(Xerror3,inf)    % Inf. norm of Xerror 
Ze3inf = norm(Zerror3,inf)    % Inf. nrom of Zerror 

  
% 4th iteration, doubles number of nodes 
[Body4, Lines4, q4] = SysRefine(Body3,Lines3,qf3); 
qf4 = EquilSolver(Body4,Lines4,q4); 

  
figure 
plot3(Xa,Ya,Za,'r','LineWidth',2) 
PlotSolu(qf4,Body4,Lines4) 
view(0,0) 
xlim([0 8]); xlabel('X (m)') 
zlim([0 6]); zlabel('Z (m)') 
legend('Analytical','Numerical','Location','NorthWest') 

  
% Calc. Errors 
N4 = Lines4(1).N; 
s = 0:L/N4:L;    % Arc length at nodes 
Zerror4 = zeros(1,N4+1);  % Z error at nodes 
Xerror4 = zeros(1,N4+1);  % X error at nodes 
% Analytical solution at nodes 
[Xa4,Za4] = Catenary_Solu(E,A,L,rho_l,H,V,s); 
for i=0:N4 
    Xerror4(length(Xerror4)-i) = qf4(7+3*i)-Xa4(length(Xa4)-i); 
    Zerror4(length(Zerror4)-i) = qf4(9+3*i)-Za4(length(Za4)-i); 
end 
Xe4 = norm(Xerror4)          % 2 norm of Xerror 
Ze4 = norm(Zerror4)          % 2 norm of Zerror 
Xe4inf = norm(Xerror4,inf)    % Inf. norm of Xerror 
Ze4inf = norm(Zerror4,inf)    % Inf. nrom of Zerror 

  
% Plot errors versus N 
Nvals = [N;N2;N3;N4]; 
figure 
plot(Nvals,[Xe1;Xe2;Xe3;Xe4],Nvals,[Xe1inf;Xe2inf;Xe3inf;Xe4inf],... 
    Nvals,[Ze1;Ze2;Ze3;Ze4],Nvals,[Ze1inf;Ze2inf;Ze3inf;Ze4inf]) 
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xlabel('N'); ylabel('Error (m)'); 
legend('||Xe||_2','||Xe||_\infty','||Ze||_2','||Ze||_\infty') 
figure 
loglog(Nvals,[Xe1;Xe2;Xe3;Xe4],Nvals,[Xe1inf;Xe2inf;Xe3inf;Xe4inf],... 
    Nvals,[Ze1;Ze2;Ze3;Ze4],Nvals,[Ze1inf;Ze2inf;Ze3inf;Ze4inf]) 
xlabel('N'); ylabel('Error (m)'); 
legend('||Xe||_2','||Xe||_\infty','||Ze||_2','||Ze||_\infty') 
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Appendix 4 – Catenary_Solu.m – Analytical Catenary Solution 

Equations 

function [Xa,Za] = Catenary_Solu(E,A,L,rho,H,V,s) 
% Calculates the 2D analytical solution of an elastic catenary line fixed 
% at one end with a horizontal and vertical force applied at the other 

end. 
% Inputs: Elastic modulus E, unstrained cross-section area A, unstrained 
% length L, linear mass density rho, applied horizontal force H, applied 
% vertical force V, and arc length s measured from the fixed end. 
% Output: The horizontal (Xa) and vertical position (Za) of the line 
% measured from the fixed end, returned in a column matrix Solu = [Xa,Za] 
% Ex. Solu = Catenary_Solu(E,A,L,rho,H,V,s) 

  
g = newLine.g;  % gravity 

  
Xa = H*s/(E*A) + H/(rho*g)*(asinh((V-rho*g*L+rho*g*s)/H)-asinh((V-

rho*g*L)/H)); 
Za = s/(E*A)*(V-rho*g*L)+0.5*rho*g*s.*s/(E*A)+H/(rho*g)*(sqrt(1+((V-

rho*g*L+rho*g*s)/H).^2)-sqrt(1+((V-rho*g*L)/H)^2)); 

  
end 
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Appendix 5 – RigidBody_test.m – Rigid Body Rotation Test Setup 

clear 
close all 
clc 

  
% Rigid Body rotation test problem 
% The fluid velocity function must return zero fluid velocity, and the 
% fluid density in the newLine class must be set to zero. 

  
% Define parameters for analytical solution 
K1 = 10;    % Spring constant 1 (N/m) 
K2 = 5;     % Spring constant 2 (N/m) 
L = 3;      % Free length of both springs 
% Width of body, and separation of attachment points on ground (m) 
W = 5; 
% Length along body of applied force, measured from left end (m) 
l3 = 3;      
F = 20;     % Applied Force (N), acts only in Y direction 
% Applied Moment (N*m), gamma direction in the body-fixed frame, Z 
% direction in global frame 
T = 25;      

  
% Specify Body properties, only used to specify applied force, torque and 
% initial body position, all other properties set to zero. 

  
% Mass of body (kg) 
M = 0; 
% Volume of body (m^3) 
V = 0; 
% Center of buoyancy relative to center of mass in body-fixed frame (m), 
% column vector [cbx'; cby'; cbz'] 
cB = [0; 0; 0]; 
% Coefficients of Drag in the body-fixed frame [CDx'; CDy'; CDz'] 
CD = [0; 0; 0];       
% Effective surface areas of the Body in the body-fixed frame (m^2) 
% [Ax'; Ay'; Az'] 
AB = [0; 0; 0]; 
% Applied forces to the Body in global frame (N) [FaX; FaY; FaZ] 
Fa = [0; F; 0]; 
% Applied torques to the Body in global frame (N*m) [TaX; TaY; TaZ] 
Ta = [0; 0; T]; 
% Initial position of center of mass in global frame (m) c = [x; y; z] 
c_i = [l3; L; 0]; 
% Initial xyz Euler angles (radians) angles_i = [alpha; beta; gamma] 
angles_i = [0; 0; 0]; 

  
% Creates new Body object 
Body = newBody(M,V,cB,CD,AB,Fa,Ta,c_i,angles_i) 

  
% Specify Mooring Line properties, used as linear springs, the linear 
% density must be set to zero for massless springs 
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% Linear mass density of the line (kg/m) 
rho_l = 0; 
% Unstretched length of the entire mooring line (m) 
% L 
% Number of segments per mooring line 
N = 1; 
% Diameter of the line (m) 
d = .01; 
% Stiffness of mooring lines (N/m) 
K = [K1, K2]; 
% Attachment point of mooring line to body in body-fixed frame (m) 
% pBi = [pBx';pBy';pBz'] 
pB1 = [-l3;0;0]; 
pB2 = [W-l3;0;0]; 
pB = [pB1, pB2]; 
% Attachment point of mooring line to ground in global frame (m) 
% pGi = [pGX; pGY; pGZ] 
pG1 = [0;0;0]; 
pG2 = [W;0;0]; 
pG = [pG1, pG2]; 

  
% Set up initial 2D displacements 
q_i2D = [c_i(1:2);angles_i(3)]; 

  
nl = 2; % # mooring lines 

  
for i=1:nl 
    % Initial coordinates of the nodes 
    % Sets up nodes along a straight line from the Body attachment point 

to 
    % the ground attachment point 

     
    % Body node in global frame 
    p0 = c_i + Txyz(angles_i)*pB(:,i); 
    % Line vector from Body node to Ground node 
    Lvec = pG(:,i) - p0;    
    % Initialize node coords. 
    ql_i = zeros((N+1)*3,1); 
    % Body node 
    ql_i(1:3) = p0; 
    % Ground node 
    ql_i((N+1)*3 - 2:(N+1)*3) = pG(:,i); 
    % Sets up segment nodes 
    if N>1                                   
        for j=1:(N-1) 
            ql_i(1+3*j:3+3*j) = p0 + Lvec*j/N; 
        end 
    end 

  
    % Sorts the coords. of the line nodes into column vectors 
    P_i = reshape(ql_i,3,length(ql_i)/3); 

  
    % Create new line object 
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    Lines(i) = newLine(rho_l,L,N,d,K(i),pB(:,i),pG(:,i),P_i) 

     
    % 2D node coords. 
    ql_i2D = reshape(P_i(1:2,:),2*(N+1),1); 

  
    % Add initial node coords. to initial displacements 
    q_i2D = [q_i2D;ql_i2D]; 
end 

  
% Solve the system with the 2D equilibrium solver setup 
[qf,hessian] = EquilSolver2D(Body,Lines,q_i2D); 

  
% Set up properties to solve the analytical solution 

  
% Sets up parameters for the analytical equations 
param = [K1; K2; L; L; W; l3; F; T]; 

  
% Define initial guess for Y = [x1; z1; theta] 
Y = [3; 1; 1.5]; 

  
% Solve the analytical equilibrium equations 
[Y,Vf] = fsolve(@(Y)RigidBodyfuns(Y,param),Y) 

  
% Calc x2 and y2 
x2 = Y(1) + W*cos(Y(3)) 
y2 = Y(2) + W*sin(Y(3)) 
x3 = Y(1) + l3*cos(Y(3)) 
y3 = Y(2) + l3*sin(Y(3)) 

  
% Plot original and deformed shapes 
Xorig = [0; 0; W; W]; 
Yorig = [0; L; L; 0]; 
Zorig = zeros(size(Xorig)); 
Xnew = [0; Y(1); x2; W]; 
Ynew = [0; Y(2); y2; 0]; 
Znew = zeros(size(Xnew)); 
hold on 
plot3(Xorig,Yorig,Zorig,'go--') 
plot3(Xnew,Ynew,Znew,'ro-') 
xlim([-.5 5.5]) 
% Plot the solution 
PlotSolu2D(qf,Body,Lines) 

  
% Calc. errors, 2D 
X1e = qf(4) - Y(1) 
Y1e = qf(5) - Y(2) 
Theta_e = qf(3) - Y(3) 
X2e = qf(8) - x2 
Y2e = qf(9) - y2 

  
% Eigen values of the Hessian 
eig(hessian) 
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Appendix 6 – RigidBodyfuns.m – Analytical Rigid Body Rotation 

Equilibrium Equations 

% Rigid Body rotation test problem, analytical equations 
% Define the functions to be solved by 'fsolve' 
% These are the partial derivatives of the potential energy function with 
% respect to each generalized coordinate 
% Where Y = [x1; y1; theta] 
% param = [k1; k2; l1; l2; W; l3; F; M] 
function Func = RigidBodyfuns(Y,param) 
Func = zeros(3,1); 
k1 = param(1); 
k2 = param(2); 
l1 = param(3); 
l2 = param(4); 
W = param(5); 
l3 = param(6); 
F = param(7); 
M = param(8); 

  
Func(1) = k1*Y(1)*(sqrt(Y(1)^2 + Y(2)^2) - l1)/sqrt(Y(1)^2 + Y(2)^2) + ... 
    k2*(sqrt((Y(1)+W*cos(Y(3))-W)^2 + (Y(2)+W*sin(Y(3)))^2) - 

l2)*(Y(1)+W*cos(Y(3))-W)/sqrt((Y(1)+W*cos(Y(3))-W)^2 + 

(Y(2)+W*sin(Y(3)))^2); 

  
Func(2) = k1*Y(2)*(sqrt(Y(1)^2 + Y(2)^2) - l1)/sqrt(Y(1)^2 + Y(2)^2) + ... 
    k2*(sqrt((Y(1)+W*cos(Y(3))-W)^2 + (Y(2)+W*sin(Y(3)))^2) - 

l2)*(Y(2)+W*sin(Y(3)))/sqrt((Y(1)+W*cos(Y(3))-W)^2 + (Y(2)+W*sin(Y(3)))^2) 

- F; 

  
Func(3) = -F*l3*cos(Y(3)) -M + ... 
    k2*(sqrt((Y(1)+W*cos(Y(3))-W)^2 + (Y(2)+W*sin(Y(3)))^2) - l2)*(-

2*W*(Y(1)+W*cos(Y(3))-W)*sin(Y(3)) + 

2*(Y(2)+W*sin(Y(3)))*W*cos(Y(3)))/(2*sqrt((Y(1)+W*cos(Y(3))-W)^2 + 

(Y(2)+W*sin(Y(3)))^2)); 
end 
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Appendix 7 – FluidVelocity.m – Fluid Velocity Profile Functions 

function Uf = FluidVelocity(p) 
% Returns the fluid velocity in the global frame as a column vector 
% Uf = [UfX; UfY; UfZ], given the global coordinates of the point of 
% interest p = [x; y; z] 
% Ex. Uf = FluidVelocity(p) 

  
x = p(1); 
y = p(2); 
z = p(3); 

  
Uf = zeros(3,1); 

  
% Defines fluid velocity profile for example test problem 
% Magnitude of fluid velocity (m/s) 
U = 4; 

  
% Angle fluid velocity makes from Y-axis, + clockwise (degrees) 
theta = 0; 

  
% Calculate the components of the fluid velocity 
% Uf(1) = UfX, Uf(2) = UfY, Uf(3) = UfZ 
Uf(1) = U*sind(theta); 
Uf(2) = U*cosd(theta); 
Uf(3) = 0; 
end 
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Appendix 8 – newBody.m – Body Class 

% Body Class 
% Keeps track of all properties, forces and potential energies for a body 

  
classdef newBody 

     
    % Define properties constant to all Body objects 
    properties (Constant) 
        g = 9.81;       % Gravity (m/s^2) 
        rho_f = 1020;   % Fluid density (kg/m^3) 
    end 

     
    % Define properties specific to each Body 
    properties (SetAccess = private) 
        M       % Mass of body (kg) 
        V       % Volume of body (m^3) 
        cB      % Center of buoyancy relative to center of mass in body-

fixed frame (m), column vector [cbx'; cby'; cbz'] 
        CD      % Coefficients of Drag in the body-fixed frame [CDx'; 

CDy'; CDz'] 
        A       % Effective surface areas of the Body in the body-fixed 

frame (m^2) [Ax'; Ay'; Az'] 
        Fa      % Applied forces to the Body in global frame (N) [FaX; 

FaY; FaZ] 
        Ta      % Applied torques to the Body in global frame (N*m) [TaX; 

TaY; TaZ] 
        W       % Weight of the Body (N) (acts in negative Z direction) 
        FB      % Buoyant force on the Body (N) (acts in positive Z 

direction) 
        FD      % Constant drag force on the Body (N) 
    end 

        
    methods 

         
        % Define the syntax to create a new Body object 
        function obj = newBody(M,V,cB,CD,A,Fa,Ta,c_i,angles_i) 

             
            % Initialize the properties 
            obj.M = M; 
            obj.V = V; 
            obj.cB = cB; 
            obj.CD = CD; 
            obj.A = A; 
            obj.Fa = Fa; 
            obj.Ta = Ta; 
            obj.W = -M*newBody.g;            
            obj.FB = newBody.rho_f*V*newBody.g; 
            obj.FD = BodyDragForce(CD,A,c_i,angles_i); 
        end 

         
        function VW = Vb_weight(obj,z) 
            % Calculate the gravitational potential energy of the Body 
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            % Given the global z coordinate of the center of mass 
            % Ex. VW = Vb_weight(obj,z) 

             
            % VW = -W*z 
            VW = -obj.W*z; 
        end 

         
        function VB = Vb_buoyancy(obj,c,angles) 
            % Calculate the potential energy of the buoyant force 
            % Given the global coordinates of the center of mass c = 

[x;y;z] 
            % and the XYZ Euler angles = [alpha; beta; gamma] 
            % Ex. VB = Vb_buoyancy(obj,c,angles) 

             
            % Calc. center of buoyancy in global frame, cBg 
            cBg = c + Txyz(angles)*obj.cB; 

             
            % VB = -FB*cBgZ 
            VB = -obj.FB*cBg(3); 
        end 

                 
        function VD = Vb_drag(obj,c) 
            % Calculate the potential energy of the drag force on the Body 
            % Given the global coordinates of the center of mass c = 

[x;y;z] 
            % Ex. VD = Vb_drag(obj,c) 

             
            % VD = -FDX*x - FDY*y - FDZ*z 
            VD = -obj.FD(1)*c(1) - obj.FD(2)*c(2) - obj.FD(3)*c(3); 
        end 

         
        function VFa = Vb_appl_forces(obj,c) 
            % Calculate the potential energy of the applied forces 
            % Given the global coordinates of the center of mass c = 

[x;y;z] 
            % Ex. VFa = Vb_appl_forces(obj,c) 

             
            % VFa = -FaX*x - FaY*y - FaZ*z 
            VFa = -obj.Fa(1)*c(1) - obj.Fa(2)*c(2) - obj.Fa(3)*c(3); 
        end 

         
        function VTa = Vb_appl_torques(obj,angles) 
            % Calculate the potential energy of the applied torques 
            % Given the XYZ Euler angles = [alpha; beta; gamma] 
            % Ex. VTa = Vb_appl_torques(obj,angles) 

             
            % Calc. torques in body-fixed frame, Tab = [Ta_alpha; Ta_beta; 

Ta_gamma] 
            % Inverse Txyz = Transpose Txyz = Txyz(angles)' 
            Tab = Txyz(angles)'*obj.Ta; 

             
            % VTa = -Ta_alpha*alpha - Ta_beta*beta - Ta_gamma*gamma 
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            VTa = -Tab(1)*angles(1) - Tab(2)*angles(2) - Tab(3)*angles(3); 
        end 

         
        function Vb_total = Vbody_total(obj,c,angles) 
            % Calculate the total potential energy of all forces on the 

body 
            % Given the global coordinates of the center of mass c = 

[x;y;z] 
            % and the XYZ Euler angles = [alpha; beta; gamma] 
            % Ex. Vb_total = Vbody_total(obj,c,angles) 

             
            VW = Vb_weight(obj,c(3));            % Gravitational potential 
            VB = Vb_buoyancy(obj,c,angles);      % Buoyancy potential 
            VD = Vb_drag(obj,c);                 % Drag potential 
            VFa = Vb_appl_forces(obj,c);         % Applied force potential 
            VTa = Vb_appl_torques(obj,angles);   % Applied torque 

potential 

             
            % Total Body potential energy 
            Vb_total = VW + VB + VD + VFa + VTa; 
        end 

         
        function PlotBody3D(obj,c,angles) 
            % Plots a representation of the Body object 
            % Given the global coordinates of the center of mass c = 

[x;y;z] 
            % and the XYZ Euler angles = [alpha; beta; gamma] 
            % Ex. PlotBody3D(obj,c,angles) 

             
            % Define the dimensions of the Body, as a 3D box centered with 
            % the body-fixed frame. User may also create new properties of  
            % the Body class to define values for each Body object. 
            w = 28;     % width along x' axis (m) 
            h = 8.5;    % height along z' axis (m) 
            d = 4;      % depth along y' axis (m) 

             
            % Corner points of the box, to include translation and 

rotation 
            % of the Body 
            p1 = c + Txyz(angles)*[w/2; -d/2; -h/2]; 
            p2 = c + Txyz(angles)*[w/2; -d/2; h/2]; 
            p3 = c + Txyz(angles)*[-w/2; -d/2; h/2]; 
            p4 = c + Txyz(angles)*[-w/2; -d/2; -h/2]; 
            p5 = c + Txyz(angles)*[w/2; d/2; -h/2]; 
            p6 = c + Txyz(angles)*[w/2; d/2; h/2]; 
            p7 = c + Txyz(angles)*[-w/2; d/2; h/2]; 
            p8 = c + Txyz(angles)*[-w/2; d/2; -h/2]; 

             
            % Front surface coords. 
            xf = [p1(1); p2(1); p3(1); p4(1)]; 
            yf = [p1(2); p2(2); p3(2); p4(2)]; 
            zf = [p1(3); p2(3); p3(3); p4(3)]; 
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            % Back surface coords. 
            xb = [p5(1); p6(1); p7(1); p8(1)]; 
            yb = [p5(2); p6(2); p7(2); p8(2)]; 
            zb = [p5(3); p6(3); p7(3); p8(3)]; 

  
            % Right surface coords. 
            xr = [p5(1); p6(1); p2(1); p1(1)]; 
            yr = [p5(2); p6(2); p2(2); p1(2)]; 
            zr = [p5(3); p6(3); p2(3); p1(3)]; 

  
            % Left surface coords. 
            xl = [p8(1); p7(1); p3(1); p4(1)]; 
            yl = [p8(2); p7(2); p3(2); p4(2)]; 
            zl = [p8(3); p7(3); p3(3); p4(3)]; 

  
            % Top surface coords. 
            xt = [p2(1); p6(1); p7(1); p3(1)]; 
            yt = [p2(2); p6(2); p7(2); p3(2)]; 
            zt = [p2(3); p6(3); p7(3); p3(3)]; 

  
            % Bottom surface coords. 
            xm = [p1(1); p5(1); p8(1); p4(1)]; 
            ym = [p1(2); p5(2); p8(2); p4(2)]; 
            zm = [p1(3); p5(3); p8(3); p4(3)]; 

  
            % Body polygon X coords. 
            X = [xf xb xr xl xt xm]; 

  
            % Body polygon Y coords. 
            Y = [yf yb yr yl yt ym]; 

  
            % Body polygon Y coords. 
            Z = [zf zb zr zl zt zm]; 

             
            % Plots 3D faces of the Body on the current plot 
            fill3(X,Y,Z,'g','FaceAlpha',0.2) 
        end 
    end 
end 

  
function FD = BodyDragForce(CD,A,c,angles) 
% Calculates the drag force on the Body, estimated as a constant force for  
% the solution process. Given the Body's coefficients of drag, CD, and  
% surface areas, A, initial global coordinates of the center of mass  
% c = [x;y;z] and the initial XYZ Euler angles = [alpha; beta; gamma]. 
% Ex. FD = DragForce(CD,A,c,angles) 

             
% Get fluid velocity in global frame at center of mass, uf = [ufX; ufY; 

ufZ]  
uf = FluidVelocity(c); 

             
% Calc. fluid velocity in body-fixed frame, ufb = [ufx'; ufy'; ufz'] 
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% Inverse Txyz = Transpose Txyz = Txyz(angles)' 
ufb = Txyz(angles)'*uf; 

             
% Calc. drag forces in body-fixed frame 
% FDb = 0.5*rho_f*CD*A*uf*|uf|, FDb = [FDx'; FDy'; FDz'] 
FDb = zeros(3,1); 
for i=1:3 
    FDb(i) = 0.5*newBody.rho_f*CD(i)*A(i)*ufb(i)*abs(ufb(i)); 
 end 

             
% Calc. drag forces in global frame, FD = [FDX; FDY; FDZ] 
FD = Txyz(angles)*FDb; 
end 

 

  



 
87 

 

 
 

Appendix 9 – newLine.m – Mooring Line Class 

% Line Class 
% Keeps track of the potential energies for all N segments of an entire 
% mooring line 

  
classdef newLine 

     
    % Define properties constant to all Line objects 
    properties (Constant) 
        g = 9.81;       % Gravity (m/s^2) 
        rho_f = 1020;   % Fluid density (kg/m^3) 

         
        CDt = 0.3;      % Coefficient of drag tangent to segment 
        CDn = 1;        % Coefficient of drag normal to segment 
    end 

         
    % Define properties specific to each mooring line 
    properties (SetAccess = private) 
        % Properties to be defined when creating a new Line object 
        rho_l   % Linear mass density of the line (kg/m) 
        L       % Unstretched length of the entire mooring line (m) 
        N       % Number of segments per mooring line 
        d       % Diameter of the line (m) 
        K       % Stiffness of mooring line (N/m) 
        pB      % Attachment point of mooring line to body in body-fixed 

frame (m) [pBx';pBy',pBz'] 
        pG      % Attachment point of mooring line to ground in global 

frame (m) [pGX; pGY; pGZ] 

         
        % Properties calculated from previous properties 
        Ls      % Original length of each segment (m) 
        Ms      % Mass of each segment (kg) 
        Vs      % Volume of each segment (m^3) 
        Ast     % Area of each segment in the tangental direction (m^2) 
        Asn     % Area of each segment in the normal direction (m^2) 
        Ks      % Stiffness of each segment (N/m) 
        Qi      % Matrix (3xN) containing the initial coordinates of the 

center of each segment as column vectors 
        FDs     % Constant drag force on each segment (N) (3xN matrix) 
        FDt     % Tangential component of drag (N) (3xN matrix) 
        FDn     % Normal component of drag (N) (3xN matrix) 
    end 

     
    methods 

         
        % Define the syntax to create a new Body object 
        function obj = newLine(rho_l,L,N,d,K,pB,pG,P_i) 

             
            % Initialize the properties 
            obj.rho_l = rho_l; 
            obj.L = L; 
            obj.N = N; 
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            obj.d = d; 
            obj.K = K; 
            obj.pB = pB; 
            obj.pG = pG; 
            obj.Ls = L/obj.N; 
            obj.Ms = rho_l*obj.Ls; 
            obj.Vs = pi*(d^2)/4*obj.Ls; 
            obj.Ast = pi*d*obj.Ls; 
            obj.Asn = d*obj.Ls; 
            obj.Ks = obj.N*obj.K; 
            obj.Qi = SegCenters(P_i); 
            [obj.FDs, obj.FDt, obj.FDn] = 

SegDragForces(obj.Ast,obj.Asn,obj.Qi,P_i,obj.N); 
        end 

         
        function VW = Vl_weight(obj,Q) 
            % Calculates the potential energy of the net weight and 

buoyant 
            % force for the entire mooring Line, given the 3xN matrix Q of  
            % the coordinates of the center of each segment. 
            % Ex. VW = Vl_weight(obj,Q) 

                         
            % Calculates the total weight+buoyancy potential energy of the  
            % line by summing the potential of each segment. The net 

weight 
            % and buoyant force on each segment is w = (-Ms + rho*Vs)*g. 
            % The potential energy of each segment is VW = -w*qZ 
            VW = -(-obj.Ms + newLine.rho_f*obj.Vs)*newLine.g*sum(Q(3,:)); 
        end 

         
        function VD = Vl_drag(obj,Q) 
            % Calculates the potential energy of the drag force for the 
            % entire mooring Line, given the 3xN matrix Q of the 
            % coordinates of the center of each segment. 
            % Ex. VD = Vl_drag(obj,Q) 

             
            VD = 0; % Initialize drag potential 

             
            % Calculate the total drag potential energy by summing the 
            % potential of each segment, VD = -FDX*qX - FDY*qY - FDZ*qZ 
            for i=1:obj.N 
                VD = VD - obj.FDs(1,i)*Q(1,i) - obj.FDs(2,i)*Q(2,i) - 

obj.FDs(3,i)*Q(3,i); 
            end 
        end 

         
        function VK = Vl_stiffness(obj,P) 
            % Calculates the potential energy due to stiffness for the 
            % entire mooring Line, given the 3xN+1 matrix P of the 
            % coordinates of N+1 consecutive nodes. 
            % Ex. VK = Vl_stiffness(obj,P) 

             
            VK = 0; % Initialize stiffness potential 
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            % Calculate the total stiffness potential energy by summing 

the 
            % potential of each segment, VK = (1/2)Ks*(delta_Ls)^2 
            for i=1:obj.N 
                VK = VK + 0.5*obj.Ks*(norm(P(:,i+1)-P(:,i)) - obj.Ls)^2; 
            end 
        end 

         
        function Vl_total = Vline_total(obj,P) 
            % Calculate the total potential energy of the mooring Line, 
            % given the 3xN+1 matrix P of the coordinates of N+1 
            % consecutive nodes. 
            % Ex. Vl_total = Vline_total(obj,P) 

             
            Q = SegCenters(P);          % Calc. segment centers 
            VW = Vl_weight(obj,Q);      % Weight + buoyant potential 
            VD = Vl_drag(obj,Q);        % Drag potential 
            VK = Vl_stiffness(obj,P);   % Stiffness potential 

             
            % Total mooring Line potential energy 
            Vl_total = VW + VD + VK; 
        end 
    end          
end 

  
function [FDs, FDt, FDn] = SegDragForces(Ast,Asn,Q,P,N) 
% Calculates the drag force on each line segment, estimated as a constant 
% force for the solution process based on the initial locations of segment 
% centers. Returns the 3xN matrices FDs, FDt, FDn of the net drag force, 
% tangential drag force, and normal drag force respectively as column 
% vectors on each segment, given the segment areas in the tangential and  
% normal directions respectively (Ast, Asn), the 3xN matrix Q of the  
% coordinates of the center of each segment, the 3xN+1 matrix P of the 
% coordinates of consecutive nodes, and the number of segments N. 
% Ex. [FDs, FDt, FDn] = SegDragForces(Ast,Asn,Q,P,N) 

  
rho = newLine.rho_f;    % Fluid density 
CDt = newLine.CDt;      % Tangential drag coeff. 
CDn = newLine.CDn;      % Normal drag coeff. 

  
% Initialize matrices 
Uf = zeros(3,N);    % Fluid velocities 
t = zeros(3,N);     % Tangent unit vectors 
a = zeros(1,N);     % Tangential magnitude of fluid velocity 
b = zeros(1,N);     % Normal magnitude of fluid velocity 
n = zeros(3,N);     % Normal unit vectors 
FDs = zeros(3,N);   % Segments net drag forces 
FDt = FDs;          % Segments tangential drag force 
FDn = FDs;          % Segments normal drag force 

  
% Calculate the drag force for each segment 
for i=1:N 
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    % Get fluid velocity at segment center 
    Uf(:,i) = FluidVelocity(Q(:,i));                 
    % Calc. tangent unit vector, t = (P2-P1)/|P2-P1| 
    t(:,i) = (P(:,i+1)-P(:,i))/norm(P(:,i+1)-P(:,i)); 
    % Tangential magnitude, a = UfX*tX + UfY*tY + UfZ*tZ 
    a(i) = Uf(1,i)*t(1,i) + Uf(2,i)*t(2,i) + Uf(3,i)*t(3,i); 
    % Normal magnitude, b = sqrt(|Uf|^2 - a^2);      
    b(i) = sqrt(Uf(1,i)^2 + Uf(2,i)^2 + Uf(3,i)^2 - a(i)^2); 
    % Check for non-zero normal magnitude 
    if b(i) ~= 0     
        % Normal unit vector, n = (1/b)(Uf - a*t) 
        n(:,i) = (1/b(i))*(Uf(:,i) - a(i)*t(:,i));   
    end 
    % Calc. tangential drag force, FDt = (1/2)rho*CDt*At*a*|a| 
    FDt(:,i) = 0.5*rho*CDt*Ast*a(i)*abs(a(i))*t(:,i); 
    % Calc. normal drag froce, FDn = (1/2)rho*CDn*An*b^2 
    FDn(:,i) = 0.5*rho*CDn*Asn*(b(i)^2)*n(:,i); 
    % Calc. net drag force, FDs = FDt + Fdn 
    FDs(:,i) = FDt(:,i) + FDn(:,i); 

         
end 
end 
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Appendix 10 – SegCenters.m – Calculate Center of Line Segments 

function Q = SegCenters(P) 
% Returns a m x N matrix Q of the coordinates of the center of N line  
% segments as column vectors, given the coordinates of N+1 consecutive  
% nodes as column vectors in a m x N+1 matrix P. 
% Ex. Q = SegCenters(P) 

  
[m,n] = size(P); 
N = n-1;      % Number of line segments 

  
Q = zeros(m,N);     % Initialize Q matrix 

  
% Calculate the center for N segments 
for i=1:N 
    Q(:,i) = 0.5*(P(:,i) + P(:,i+1)); 
end 
end 
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Appendix 11 – EquilSolver.m – Equilibrium Solver, fmincon 

Parameters and Constraints Setup 

function qf = EquilSolver(Body,Lines,q_i) 
% Sets up all parameters and constraint equations needed to pass to the 
% solving function used to minimize the potential energy of the system and 
% return the final (equilibrium) values q of the displacements. Given the 
% Body object (Body), the array of the Line objects (Lines) and the array 
% of the initial displacements q_i. q_i must contain the Body C.O.M. 
% coords., followed by the XYZ Euler angles, then the coords of 

consecutive 
% nodes for each mooring line. For n mooring lines each of N segments: 
% q_i = [x;y;z;a;b;g;p10x;p10y;p10z;...;p1Nx;p1Ny;p1Nz;p20x;p20y;p20z;...; 
% pijx;pijy;pijz;...;pnNx;pnNy;pnNz] 
% where j goes from 1 to N, and then i from 1 to n. 
% Ex. q = EquilSolver(Body,Lines,q_i) 

  
N = Lines(1).N;     % Number of line segments per mooring line 

  
nl = length(Lines); % Number of mooring lines 

  
% Bound Constraints 
% For the ground constraint, set the lower bound of the Z coord. of every 
% point to 0. Ex. z >= 0. All other displacements unbounded. 
lb = -Inf(size(q_i)); 
lb(3) = 0;  % Z coord. of Body 
% Set lower bound of Z coord. of every line node to 0 
for i=9:3:length(lb) 
    lb(i) = 0; 
end 

  
% Linear Equality Constraints 
% Constraints of the form Aeq*x = beq, where Aeq is an m by n matrix, and 
% beq is an m by 1 vector. m is the # of constraints and n # of variables. 
% Sets up the ground attachment constraints where the last node of each 
% mooring line has the same coords. as its ground attachment point. 

  
% Sets up beq vector containing the coords. of the ground attachment 

points 
beq = []; 
% Sets up the Aeq matrix, placing a 1 corresponding to the coord. of the 
% last node for each mooring. 
Aeq = zeros(3*nl,length(q_i)); 
for i=1:nl; 
    % Adds ground attachment coords. to beg vector 
    beq = [beq;Lines(i).pG];             
    Aeq(3*i - 2, 4 + 3*(N+1)*i) = 1;    % X coord. 
    Aeq(3*i - 1, 5 + 3*(N+1)*i) = 1;    % Y coord. 
    Aeq(3*i, 6 + 3*(N+1)*i) = 1;        % Z coord.  
end 

  
% Non-linear Constraints 
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function [Cineq, Ceq] = NonLinCon(q) 
% This function returns the non-linear inequality and equality 

constraints. 

  
% Non-linear Inequality Constraints 
% Sets up the slack constraint with the change in length of each segment 

is 
% greater than or equal to zero. Constraints must be of the form 
% Cineq(x) <= 0. 
% Ex. -|(pi,j+1) - (pi,j)| + Ls <= 0 

  
% Sorts the coords. of the line nodes into column vectors 
P = reshape(q(7:length(q)),3,(nl*(N+1))); 

  
Cineq = zeros(nl*N,1); 
for k=1:nl 
    for j=1:N 
        Cineq(j+(N*k-N)) = -norm(P(:,j+(N+1)*(k-1)+1)-P(:,j+(N+1)*(k-1))) 

+ Lines(k).Ls; 
    end 
end 

  
% Non-linear Equality Constraints 
% Sets up the Body attachment constraints where the first node of each 
% mooring line has the same coords. as its Body attachment point. 
% Constraints must be of the form Ceq(x) = 0. 
% Ex. pi,0 - c - Txyz*piB = 0. 

  
c = [q(1);q(2);q(3)];       % Body C.O.M. coords 
angles = [q(4);q(5);q(6)];  % Euler angles 

  
Ceq = []; 
for k=1:nl 
    % Coords. of Lines first node 
    pi0 = [q(7+3*(N+1)*(k-1));q(8+3*(N+1)*(k-1));q(9+3*(N+1)*(k-1))]; 

     
    Ceq = [Ceq; pi0 - c - Txyz(angles)*Lines(k).pB]; 
end 
end 

  
% Objective function 
% This function returns the value to be minimized by the solver 
function Vt = Vtotal(q) 
% This function returns the total potential energy of the system 
c = [q(1);q(2);q(3)];       % Body C.O.M. coords 
angles = [q(4);q(5);q(6)];  % Euler angles 
% Sorts the coords. of the line nodes into column vectors 
P = reshape(q(7:length(q)),3,(nl*(N+1))); 

  
Vt = 0;     % Total potential energy 
Vt = Vt + Vbody_total(Body,c,angles);   % Potential of Body 
for k=1:nl  % Total potential of each mooring line 
    Vt = Vt + Vline_total(Lines(k),P(:,1+(N+1)*(k-1):(N+1)*k)); 
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end 
end 

  
% Constrained Nonlinear Optimization solver 
% Function used to minimize the potential energy and return the final 
% values of the displacements 
% Sets up the options for the solver 
options = optimset('Algorithm','active-set','Display','iter','TolFun',1e-

6,'MaxFunEvals',500*length(q_i)); 

  
[qf,Vf,exitflag,output,lambda,grad,hessian] = 

fmincon(@Vtotal,q_i,[],[],Aeq,beq,lb,[],@NonLinCon,options); 

  
end 
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Appendix 12 – PlotSolu.m – Makes a 3D Plot of the Body and Mooring 

Lines 

function PlotSolu(q,Body,Lines) 
% Makes a 3D plot of the mooring lines and body system, given the vector 

of 
% displacements q, the Body object, and array of Line objects. 
% Ex. PlotSolu(q,Body,Lines) 

  
N = Lines(1).N;     % Number of line segments per mooring line 
nl = length(Lines); % Number of mooring lines 

  
c = [q(1);q(2);q(3)];       % Body C.O.M. coords 
angles = [q(4);q(5);q(6)];  % Euler angles 

  
% Sorts the coords. of the line nodes into column vectors 
P = reshape(q(7:length(q)),3,(nl*(N+1))); 

  
% Sorts the node coords. into matrices, with each row corresponding to a 
% mooring line and each column a node. 
X = zeros(nl,N+1);  % X node coords. 
Y = zeros(nl,N+1);  % Y node coords. 
Z = zeros(nl,N+1);  % Z node coords. 

  
hold on 
xlabel('X (m)') 
ylabel('Y (m)') 
zlabel('Z (m)') 
axis equal 
view(3) 
%grid on 

  
for i = 1:nl 
    X(i,:) = P(1,1+(N+1)*(i-1):(N+1)*i); 
    Y(i,:) = P(2,1+(N+1)*(i-1):(N+1)*i); 
    Z(i,:) = P(3,1+(N+1)*(i-1):(N+1)*i); 

     
    plot3(X(i,:),Y(i,:),Z(i,:),'-

o','LineWidth',2,'MarkerFaceColor','none') 
end 

  
% Plot Body object 
PlotBody3D(Body,c,angles) 

 

  



 
96 

 

 
 

Appendix 13 – PlotDrag3D.m – Makes a 3D Plot of the Body and 

Mooring Line Drag Forces 

function PlotDrag3D(q,Body,Lines) 
% Plots the 3D drag force vectors on the Body and mooring line segments, 
% given the vector of displacements q, the Body object and array of Line 
% objects. 
% Ex. PlotDrag3D(q,Body,Lines) 

  
N = Lines(1).N;     % Number of line segments per mooring line 
nl = length(Lines); % Number of mooring lines 

  
% Sorts the coords. of the line nodes into column vectors 
P = reshape(q(7:length(q)),3,(nl*(N+1))); 

  
% Plot the Body drag force, scaled down by factor of 10^4 
quiver3(q(1),q(2),q(3),Body.FD(1),Body.FD(2),Body.FD(3),10^-4,'r') 

  
% Plot the Line drag forces 
for i = 1:nl 
    Q = SegCenters(P(:,1+(N+1)*(i-1):(N+1)*i)); 
    % plot tangential drag forces 
    

quiver3(Q(1,:),Q(2,:),Q(3,:),Lines(i).FDt(1,:),Lines(i).FDt(2,:),Lines(i).

FDt(3,:),'r') 
    % plot normal drag forces 
    

quiver3(Q(1,:),Q(2,:),Q(3,:),Lines(i).FDn(1,:),Lines(i).FDn(2,:),Lines(i).

FDn(3,:),'r') 
end 
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Appendix 14 – SysUpdate.m – Updates System’s Drag Forces 

function [BodyNew, LinesNew] = SysUpdate(Body,Lines,q) 
% Returns new Body and Line objects with an updated estimate of the drag 
% forces based on the displacements from a previous solution, given the 
% Body object, Lines array and the displacements q from a previous 

solution. 
% Ex. [BodyNew, LinesNew] = SysUpdate(Body,Lines,q) 

  
% Create new Body object using the new displacement and Euler angles 
BodyNew = 

newBody(Body.M,Body.V,Body.cB,Body.CD,Body.A,Body.Fa,Body.Ta,q(1:3),q(4:6)

); 

  
N = Lines(1).N;     % Number of line segments per mooring line 

  
nl = length(Lines); % Number of mooring lines 

  
% Sorts the previous coords. of the line nodes into column vectors 
P = reshape(q(7:length(q)),3,(nl*(N+1))); 

  
% Creates new Line objects using the new displacements of the nodes 
for i=1:nl 

     
    LinesNew(i) = newLine(Lines(i).rho_l,Lines(i).L,N,Lines(i).d,... 
        Lines(i).K,Lines(i).pB,Lines(i).pG,P(:,1+(N+1)*(i-1):(N+1)*i)); 
end 
end 
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Appendix 15 – SysRefine.m – Updates System’s Drag Forces and 

Doubles the Number of Mooring Line Segments 

function [BodyNew, LinesNew, qnew] = SysRefine(Body,Lines,q) 
% Returns new Body and Line objects with an updated estimate of the drag 
% forces based on the displacements from a previous solution and doubles 
% the number of segments for each mooring line, and returns the updated 
% displacement vector for the new number of segments. Given the Body 

object, 
% Lines array and the displacements q from a previous solution. 
% Ex. [BodyNew, LinesNew, qnew] = SysRefine(Body,Lines,q) 

  
% Create new Body object using the new displacement and Euler angles 
BodyNew = 

newBody(Body.M,Body.V,Body.cB,Body.CD,Body.A,Body.Fa,Body.Ta,q(1:3),q(4:6)

); 

  
N = Lines(1).N;     % Number of line segments per mooring line 

  
nl = length(Lines); % Number of mooring lines 

  
% Sorts the previous coords. of the line nodes into column vectors 
P = reshape(q(7:length(q)),3,(nl*(N+1))); 

  
% Initialize matrix for new node vectors 
Pnew = zeros(3,nl*(2*N+1)); 

  
% Doubles the number of segments for each line and creates new Line 

objects 
for i=1:nl 

     
    % Segment centers for each mooring line 
    Q = SegCenters(P(:,1+(N+1)*(i-1):(N+1)*i)); 

     
    % First node 
    Pnew(:,1+(2*N+1)*(i-1)) = P(:,1+(N+1)*(i-1)); 

     
    % Place the coords. of the segment centers in-between nodes to Pnew 
    for j=1:N 

         
        % Segment centers 
        Pnew(:,2*j+(2*N+1)*(i-1)) = Q(:,j); 

         
        % Previous nodes 
        Pnew(:,2*j+1+(2*N+1)*(i-1)) = P(:,j+1+(N+1)*(i-1)); 

         
    end 

         
    % Create new Line object with new nodes 
    LinesNew(i) = newLine(Lines(i).rho_l,Lines(i).L,2*N,Lines(i).d,... 



 
99 

 

 
 

        Lines(i).K,Lines(i).pB,Lines(i).pG,Pnew(:,1+(2*N+1)*(i-

1):(2*N+1)*i)); 

     
end 

  
% Create new displacement vector 
qnew = [q(1:6);reshape(Pnew,nl*(2*N+1)*3,1)]; 

     
end 
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Appendix 16 – EquilSolver2D.m – 2D Equilibrium Solver, fmincon 

Parameters and Constraints Setup 

function [qf,hessian] = EquilSolver2D(Body,Lines,q_i) 
% 2D Solver, X-Y plane 
% Sets up all parameters and constraint equations needed to pass to the 
% solving function used to minimize the potential energy of the system and 
% return the final (equilibrium) values q of the displacements. Given the 
% Body object (Body), the array of the Line objects (Lines) and the array 
% of the initial displacements q_i. q_i must contain the Body C.O.M. 
% coords., followed by the Z rotation angle, then the coords of 

consecutive 
% nodes for each mooring line. For n mooring lines each of N segments: 
% q_i = [x;y;gamma;p10x;p10y;...;p1Nx;p1Ny;p20x;p20y;...;pijx;pijy;...; 
% pnNx;pnNy;], where j goes from 1 to N, and then i from 1 to n. 
% Ex. [q,hessian] = EquilSolver2D(Body,Lines,q_i) 

  
N = Lines(1).N;     % Number of line segments per mooring line 

  
nl = length(Lines); % Number of mooring lines 

  
% Linear Equality Constraints 
% Constraints of the form Aeq*x = beq, where Aeq is an m by n matrix, and 
% beq is an m by 1 vector. m is the # of constraints and n # of variables. 
% Sets up the ground attachment constraints where the last node of each 
% mooring line has the same coords. as its ground attachment point. 

  
% Sets up beq vector containing the coords. of the ground attachment 

points 
beq = []; 
% Sets up the Aeq matrix, placing a 1 corresponding to the coord. of the 
% last node for each mooring. 
Aeq = zeros(2*nl,length(q_i)); 
for i=1:nl; 
    beq = [beq;Lines(i).pG(1:2)]; 
    Aeq(2*i - 1, 2 + 2*(N+1)*i) = 1;    % x coord. 
    Aeq(2*i, 3 + 2*(N+1)*i) = 1;        % y coord. 
end 

  
% Non-linear Constraints 
function [Cineq, Ceq] = NonLinCon(q) 
% This function returns the non-linear inequality and equality 

constraints. 

  
% Non-linear Inequality Constraints 
% Sets up the slack constraint with the change in length of each segment 

is 
% greater than or equal to zero. Constraints must be of the form Cineq(x) 

<= 0. 
% Ex. -|(pi,j+1) - (pi,j)| + Ls <= 0 

  
% Sorts the coords. of the line nodes into column vectors 
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P = reshape(q(4:length(q)),2,(nl*(N+1))); 

  
% Cineq = []; % No slack constraint 

  
Cineq = zeros(nl*N,1); 
for k=1:nl 
    for j=1:N 
        Cineq(j+(N*k-N)) = -norm(P(:,j+(N+1)*(k-1)+1)-P(:,j+(N+1)*(k-1))) 

+ Lines(k).Ls; 
    end 
end 

  
% Non-linear Equality Constraints 
% Sets up the Body attachment constraints where the first node of each 
% mooring line has the same coords. as its Body attachment point. 
% Constraints must be of the form Ceq(x) = 0. 
% Ex. pi,0 - c - Txyz*piB = 0. 

  
c = [q(1);q(2);0];      % Body C.O.M. coords 
angles = [0;0;q(3)];    % Euler angles 

  
Ceq = []; 
for k=1:nl 
    % Coords. of Lines first node 
    pi0 = [q(4+2*(N+1)*(k-1));q(5+2*(N+1)*(k-1));0]; 

     
    Ceq = [Ceq; pi0 - c - Txyz(angles)*Lines(k).pB]; 
end 
end 

  
% Objective function 
% This function returns the value to be minimized by the solver 
function Vt = Vtotal(q) 
% This function returns the total potential energy of the system 
c = [q(1);q(2);0];      % Body C.O.M. coords 
angles = [0;0;q(3)];    % Euler angles 
% Sorts the coords. of the line nodes into column vectors 
P = reshape(q(4:length(q)),2,(nl*(N+1)));   % 2D 
Zcoords = zeros(1,nl*(N+1)); 
P = [P;Zcoords];    % Augment P with 0 for Z coords. 

  
Vt = 0;     % Total potential energy 
Vt = Vt + Vbody_total(Body,c,angles);   % Potential of Body 
for k=1:nl  % Total potential of each mooring line 
    Vt = Vt + Vline_total(Lines(k),P(:,1+(N+1)*(k-1):(N+1)*k)); 
end 
end 

  
% Constrained Nonlinear Optimization solver 
% Function used to minimize the potential energy and return the final 
% values of the displacements 
% Sets up the options for the solver 
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options = optimset('Algorithm','active-set','Display','iter','TolFun',1e-

6,'MaxFunEvals',400*length(q_i)); 

  
[qf,Vf,exitflag,output,lambda,grad,hessian] = 

fmincon(@Vtotal,q_i,[],[],Aeq,beq,[],[],@NonLinCon,options); 

  
end 
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Appendix 17 – PlotSolu2D.m – Makes a 2D Plot of the Mooring Lines 

function PlotSolu2D(q,Body,Lines) 
% Makes a 2D plot of the mooring lines and body system, given the vector 

of 
% 2D displacements q, the Body object, and array of Line objects. 
% Ex. PlotSolu(q,Body,Lines) 

  
N = Lines(1).N;     % Number of line segments per mooring line 
nl = length(Lines); % Number of mooring lines 

  
c = [q(1);q(2);0];      % Body C.O.M. coords 
angles = [0;0;q(6)];    % Euler angles 

  
% Sorts the coords. of the line nodes into column vectors 
P = reshape(q(4:length(q)),2,(nl*(N+1))); 

  
% Sorts the node coords. into matrices, with each row corresponding to a 
% mooring line and each column a node. 
X = zeros(nl,N+1);  % X node coords. 
Y = zeros(nl,N+1);  % Y node coords. 
Z = zeros(nl,N+1);  % Z node coords. 

  
hold on 
xlabel('X (m)') 
ylabel('Y (m)') 
axis equal 
%grid on 

  
for i =1:nl 
    X(i,:) = P(1,1+(N+1)*(i-1):(N+1)*i); 
    Y(i,:) = P(2,1+(N+1)*(i-1):(N+1)*i); 

         
    plot(X(i,:),Y(i,:),'-o','LineWidth',2,'MarkerFaceColor','none') 
end 
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Appendix 18 – SegTensions.m – Calculates Tension Forces in Mooring 

Line Segments 

function [FTs_mag, FTs_vec] = SegTensions(Line, P) 
% Calculates the tension forces in the mooring line segments, given the 
% Line object and the coordinates of N+1 consecutive nodes as column 
% vectors in a m x N+1 matrix P. Returns a 1 x N matrix FTs_mag of the 
% magnitude of the tension force in each segment, and the m x N matrix 
% FTs_vec of the tension force vectors pointing in the same direction as 
% the segments unit vector. 
% Ex. [FTs_mag, FTs_vec] = SegTensions(Line, P) 

  
[m,n] = size(P); 

  
% # of line segments in the mooring line, N must equal n - 1 
N = Line.N; 

  
% Initialize the matrices 
FTs_mag = zeros(1,N);   % Tension magnitudes 
FTs_vec = zeros(m,N);   % Tension vectors 
t = zeros(m,N);         % Segment tangent unit vectors 

  
% Calculate tension for each segment 
for i = 1:N 
    % FTs_mag = Ks*delta_Ls 
    FTs_mag(i) = Line.Ks*(norm(P(:,i+1)-P(:,i)) - Line.Ls); 
    % Calc. tangent unit vector, t = (P2-P1)/|P2-P1| 
    % For this case, the unit vector and therefor the tension vector only 
    % points from the lower ordered node to the next higher ordered node 
    t(:,i) = (P(:,i+1)-P(:,i))/norm(P(:,i+1)-P(:,i)); 
    % FTs_vec = FTs_mag*t 
    FTs_vec(:,i) = FTs_mag(i)*t(:,i); 
end 
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Appendix 19 – Txyz.m – Calculates the Euler XYZ 3D Rotation 

Transformation Matrix 

function T = Txyz(angles) 
% Computes the 3D rotation transformation matrix (T) using the Euler XYZ 
% (or 1-2-3) convention, given the three rotation angles in a vector, 
% angles = [alpha; beta; gamma] (radians) 
% Ex. T = Txyz(angles) 

  
a = angles(1);  % alpha 
b = angles(2);  % beta 
g = angles(3);  % gamma 

  
T = zeros(3); 
T(1,1) = cos(b)*cos(g); 
T(1,2) = -cos(b)*sin(g); 
T(1,3) = sin(b); 
T(2,1) = sin(a)*sin(b)*cos(g) + cos(a)*sin(g); 
T(2,2) = -sin(a)*sin(b)*sin(g) + cos(a)*cos(g); 
T(2,3) = -sin(a)*cos(b); 
T(3,1) = -cos(a)*sin(b)*cos(g) + sin(a)*sin(g); 
T(3,2) = cos(a)*sin(b)*sin(g) + sin(a)*cos(g); 
T(3,3) = cos(a)*cos(b); 
end 
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